www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Maximaler Abstand
Maximaler Abstand < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximaler Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 09.01.2009
Autor: Dinker

p(x) = [mm] 0.25x^{2} [/mm] - 2x + 4

g(x) = [mm] \bruch{1}{2}x [/mm] + 4

Nun soll einen Punkt C der auf der Funktion p(x) liegt so bestimmen, damit jener Punkt den maximalen Abstand zur Gerade g(x) hat.

Leider keine Ahnung

C [mm] (a/0.25a^{2} [/mm] -2a+4)

Jene Gesuchte Strecke von C zur Gerade g(x) hat eine Steigung von m = -2x

Hab nun die Werte von Punkt C eingesetzt und folgendes erhalten:

y = -2x + [mm] 0.25a^{2} [/mm] + 4

Nun wollte ich den Punkt auf der Gerade p(x) bestimmen (Nenne ihn Q), indem ich y = p(x) setze.

-2x + [mm] 0.25a^{2} [/mm] + 4 =  [mm] \bruch{1}{2}x [/mm] + 4

x = 0.1 [mm] a^{2} [/mm]

Q (0.1 [mm] a^{2}/......) [/mm]


Doch das kann wohl nicht sein, darum bin ich jetzt am Ende meiner Anekdote . Wer hilft mir?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.






        
Bezug
Maximaler Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 09.01.2009
Autor: angela.h.b.


> p(x) = [mm]0.25x^{2}[/mm] - 2x + 4
>  
> g(x) = [mm]\bruch{1}{2}x[/mm] + 4
>  
> Nun soll einen Punkt C der auf der Funktion p(x) liegt so
> bestimmen, damit jener Punkt den maximalen Abstand zur
> Gerade g(x) hat.
>  
> Leider keine Ahnung
>  
> C [mm](a/0.25a^{2}[/mm] -2a+4)

Hallo,

ja, genau: so sehen beliebige  Punkt [mm] C_a [/mm]  aus, die auf dem Graphen von p liegen.

>  
> Jene Gesuchte Strecke von C zur Gerade g(x) hat eine
> Steigung von m = -2x

Genau. (Laß uns das Ding aber lieber "Gerade" nennen.)


> Hab nun die Werte von Punkt C eingesetzt und folgendes
> erhalten:
>  
> y = -2x + [mm]0.25a^{2}[/mm] + 4

Genau, das ist die Gleichung der Geraden, die senkrecht auf g steht und durch den Punkt C geht.

Prima bis hier!

> Nun wollte ich den Punkt auf der Gerade p(x) bestimmen

Den Schnittpunkt von y = -2x + [mm]0.25a^{2}[/mm] + 4 und der Geraden g.

> (Nenne ihn Q), indem ich y = p(x) setze.

Nee, Du setzt  y=g(x). Das machst Du unten auch. Also nur ein Tipp- oder Flüchtigkeitsfehler.

>  
> -2x + [mm]0.25a^{2}[/mm] + 4 =  [mm]\bruch{1}{2}x[/mm] + 4
>  
> x = 0.1 [mm]a^{2}[/mm]

Ich bekomme dassselbe heraus.

>  
> Q (0.1 [mm]a^{2}/......)[/mm]
>  
>
> Doch das kann wohl nicht sein, darum bin ich jetzt am Ende
> meiner Anekdote . Wer hilft mir?

Ich denke nicht, daß Deine Anekdote hier zu Ende ist.

Im meinen Augen jedenfalls sieht das sehr gut aus bisher. Klasse!

Jetzt brauchst Du noch die zweite Koordinate von Q.

Du erhältst sie durch Einsetzen von [mm] x=0.1a^2 [/mm] in  y = -2x + [mm]0.25a^{2}[/mm] + 4.

Bei richtiger Rechnung müßte man dieselbe 2. Koordinate auch erhalten, wenn man in g(x) einsetzt, denn der Punkt liegt ja auf beiden Geraden.

Das klappt exakt! Es kommt als 2. Koordinate für Q heraus [mm] 0.05a^2+4 [/mm]  (Rechne sicherheitshalber nach.)

Du hast also [mm] Q(0.1a^2 [/mm] /  [mm] 0.05a^2+4). [/mm]

Damit ist der erste Teil der Aufgabe, welcher die Vorarbeiten umfaßt, erledigt.

Jetzt erst geht's an den Abstand:

Nun stellst Du die Funktion d(a) auf, welche Dir den Abstand von C und Q (in Abhängigkeit von a liefert).

Diese Funktion ist zu optimieren, und am Ende erhältst Du das a in der Hand, für welches der Abstand maximal ist.

Ich denke, jetzt kommst Du allein weiter.

Gruß v. Angela




>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>
>
>  


Bezug
                
Bezug
Maximaler Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 09.01.2009
Autor: Dinker

Besten Dank

Leider will es nicht funktionieren
d(a) = Abstand
d(a) = [mm] \wurzel{x^{2} + y^{2}} [/mm]

x = [mm] 0.1a^{2} [/mm] - a
y = [mm] -0.2a^{2} [/mm] +2a

d(a) = [mm] \wurzel{( 0.1a^{2} - a)^{2} + ( -0.2a^{2} +2a)^{2}} [/mm]
= [mm] \wurzel{0.05a^{4}-a^{3}+5a^{2}} [/mm]


Bestimme ich erste Ableitung mit Kettenregel

v = [mm] {0.05a^{4}-a^{3}+5a^{2}} [/mm]  v' = [mm] 0.2a^{3} -3a^{2} [/mm] + 10a
u= [mm] \wurzel{t} [/mm]   u' = [mm] \bruch{1}{2\wurzel{t}} [/mm]

d'(a) =  [mm] \bruch{0.2a^{3} -3a^{2} + 10a}{\wurzel{{0.05a^{4}-a^{3}+5a^{2}}}} [/mm]

0 = [mm] 0.2a^{3} -3a^{2} [/mm] + 10a
0 = [mm] 0.2a^{2} [/mm] -3a + 10

x1 = 10
x2 = 5

Anhand der Zeichnung erkenn ich, dass bei 10 das min liegt, also ist bei 5 das Maximum

Punkt C = 5/0.25

Kann mir jemand sagen wo ich einen Fehler begangen habe?

Besten Dank



Bezug
                        
Bezug
Maximaler Abstand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:19 Fr 09.01.2009
Autor: Dinker

Oder stimmts doch?

Bezug
                        
Bezug
Maximaler Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Fr 09.01.2009
Autor: MathePower

Hallo Dinker,


> Besten Dank
>  
> Leider will es nicht funktionieren
>  d(a) = Abstand
>  d(a) = [mm]\wurzel{x^{2} + y^{2}}[/mm]
>  
> x = [mm]0.1a^{2}[/mm] - a
>  y = [mm]-0.2a^{2}[/mm] +2a
>  
> d(a) = [mm]\wurzel{( 0.1a^{2} - a)^{2} + ( -0.2a^{2} +2a)^{2}}[/mm]
>  
> = [mm]\wurzel{0.05a^{4}-a^{3}+5a^{2}}[/mm]
>  
>
> Bestimme ich erste Ableitung mit Kettenregel
>  
> v = [mm]{0.05a^{4}-a^{3}+5a^{2}}[/mm]  v' = [mm]0.2a^{3} -3a^{2}[/mm] + 10a
>  u= [mm]\wurzel{t}[/mm]   u' = [mm]\bruch{1}{2\wurzel{t}}[/mm]
>  
> d'(a) =  [mm]\bruch{0.2a^{3} -3a^{2} + 10a}{\wurzel{{0.05a^{4}-a^{3}+5a^{2}}}}[/mm]
>  
> 0 = [mm]0.2a^{3} -3a^{2}[/mm] + 10a
>  0 = [mm]0.2a^{2}[/mm] -3a + 10
>  
> x1 = 10
>  x2 = 5


Hier hast Du eine Lösung verloren.


>  
> Anhand der Zeichnung erkenn ich, dass bei 10 das min liegt,
> also ist bei 5 das Maximum


Kannst Du das auch bestätigen?


>  
> Punkt C = 5/0.25
>  


Stimmt. [ok]


> Kann mir jemand sagen wo ich einen Fehler begangen habe?
>  
> Besten Dank
>  
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]