www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maxima" - Maxima
Maxima < Maxima < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maxima"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maxima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 27.05.2020
Autor: kuyaykim

Aufgabe
Extrema(h,x):=
    block([h1,h2,j,xx,yy,ddf],
        h1(x):=(diff(h(x),x)),
        h2(x):=(diff(h1(x),x)),
        disp("======","Extrema: "),
        disp("Notwendige Bedingung: h'(x)=0"),
        N:solve(h1(x),x),
        print("moegl. Extrema: ",N),
        disp("Hinreichende Bedingung:"),
        j:0,
        for xx in N do(
            j:j+1,
            ddf:at(h2(x),xx),
            if ddf < 0 then print(j,": h''(x_",j,")=",ddf,"< 0 => Hochpunkt","Punkt: (",rhs(xx),"|",rhs(h(xx)),")" )
                elseif ddf > 0 then print(j,": h''(x_",j,")=",ddf,"> 0 => Tiefpunkt","Punkt: (",rhs(xx),"|",rhs(h(xx)),")" )
                else print("unbekannt")))$
Extrema(h,x);


Hallo!
Ich habe hier etwas in Maxima, was ich sehr gerne verstehen würde, was dort genau passiert.

Ich hoffe, dass mir jemand helfen kann?

LG
Nicole
Ich habe diese Frage bereits in folgendem Forum gestellt (https://matheplanet.com/default3.html?call=viewtopic.php?topic=235877&ref=https%3A%2F%2Fwww.google.com%2F)

        
Bezug
Maxima: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mi 27.05.2020
Autor: chrisno

Ich bin etwas verblüfft, was ist das Problem?
Ohne Ahnung von Maxima zu haben, liest sich das so runter.
Die Standardmethode zur Bestimmung lokaler Extrema sollte man allerdings kennen.
Ich schreibe den Kommentar immer in die Zeile vorher.

Die Funktion Extrema wird im weitern definiert.
Sie benötigt als Eingabe eine Funktion h, die wird untersucht.
Die Variable heißt x

> Extrema(h,x):=

In der Funktion Extrema werden benutzt:
h1, die erste Ableitung von h, h2, die zweite Ableitung von h
j als Zähler in einer Schleife, xx als x-Werte für Kandidaten für Extrema
und ddf für den Wert der zweiten Ableitung an der Stelle xx
warum da yy steht, weiß ich nicht

>      block([h1,h2,j,xx,yy,ddf],

Berechne die erste Ableitungsfunktion von h

>          h1(x):=(diff(h(x),x)),

Berechne die zweite Ableitungsfunktion von h

>          h2(x):=(diff(h1(x),x)),

Schreibe auf den Bildschirm: ======","Extrema:

>          disp("======","Extrema: "),

Schreibe auf den Bildschirm: Notwendige Bedingung: h'(x)=0

>          disp("Notwendige Bedingung: h'(x)=0"),

Suche die Nullstellen der ersten Ableitungsfunktion, speichere sie im Vektor N

>          N:solve(h1(x),x),

Schreibe auf den Bildschirm: moegl. Extrema: und dahinter die Zahl der Elemente des Vektors

>          print("moegl. Extrema: ",N),

Schreieb auf den Bildschirm: Hinreichende Bedingung:

>          disp("Hinreichende Bedingung:"),

Setze die Variable j auf den Wert Null, da sie als nächstes als Zähler benutzt wird.

>          j:0,

Nimm nacheinander alle Elemente des Vektors N und

>          for xx in N do(

Erhöhe für jedes Element den Zähler um 1

>              j:j+1,

Berechne die zweite Ableitung für den aktuellen Etremumskandidaten xx

>              ddf:at(h2(x),xx),

Falls die zweite Ableitung an dieser Nulstelle der ersten Ableitung kleiner als Null ist,
schreibe auf den Bildschirm
die Nummer der Nullstelle: j
den Text: : h''(x)=, dabei hat das x als Index den Wert von j angehängt
den Wert der zweiten Ableitung an der Stelle
den Text: < 0 => Hochpunkt
den Text: Punkt
x- und y-Wert des Punktes in der Schreibweise (x|y)

>              if ddf < 0 then print(j,": h''(x_",j,")=",ddf,"< 0 => Hochpunkt","Punkt (",rhs(xx),"|",rhs(h(xx)),")" )

entsprechend falls die zweite Ableitung größer als Null ist ....

>                  elseif ddf > 0 then print(j,": h''(x_",j,")=",ddf,"> 0 => Tiefpunkt","Punkt (",rhs(xx),"|",rhs(h(xx)),")" )

für die Fälle, bei denen dieses Kriterium versagt ...

>                  else print("unbekannt")))$

Damit ist die Fuktion zuende

>  Extrema(h,x);


Bezug
                
Bezug
Maxima: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Fr 29.05.2020
Autor: kuyaykim

Ich danke die für die Erklärung. Du hast mir damit sehr geholfen.
Leider fliegt mir das ganze nicht einfach so zu. Ich muss mich damit bexchäftigen und lernen. Deswegen, nein, ich konnte es nicht so runter lesen. Einige Dinge konnte ich mir zwar zusammenreimen, aber ich wollte es genau wissen. Halt richtig verstehen.

LG
Nicole

Bezug
                        
Bezug
Maxima: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Fr 29.05.2020
Autor: chrisno

Das ist ja der Sinn des Forums, dass du eine Antwort bekommst. Wünschenswert wäre gewesen, wenn du erst mal so weit wie möglich deine Interpretation geschrieben hättest. Dann kann man viel genauer antworten.
Andererseits war es so einfach, dass ich direkt geantwortet habe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maxima"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]