www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Max. Zylinder in Halbkugel
Max. Zylinder in Halbkugel < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Zylinder in Halbkugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Fr 18.05.2012
Autor: greenhue

Aufgabe
Einer Halbkugel vom Radius 6cm ist der Zylinder mit maximaler Mantelfläche einzubeschreiben. Wie hoch ist dieser Zylinder?

Lösung im Buch: Zylinder mit Achse senkrecht zur Kreisfläche: h=r=3*Wurzel(2)cm, Mantelfläche 36pi [mm] cm^2 [/mm]
                Zylinder mit Achse parallel zur Kreisfläche: h=6*Wurzel(2)cm, r=1.5*Wurzel(2)cm, Mantelfläche 36pi [mm] cm^2 [/mm]


Hi

Also, soweit bin ich gekommen:

Volumen Halbkreis: [mm] ((4/3pi*r^3)/3)/2 [/mm]  r=6cm --> V=144pi

Mantelfläche Zylinder: 2pi*R*h

Hauptbedingung: M(h)=2pi*R*h im Intervall [0;144pi]

Nebenbedingung: -> Nach Pythagoras [mm] R^2+h^2=r^2=36 [/mm]
                -> Nach R auflösen [mm] R=Wurzel(36-h^2) [/mm]

Und hier steck ich fest. Ich weiss, dass [mm] a^2+b^2=c^2 [/mm] nicht das selbe ist wie a+b=c. Und jetzt weiss ich nicht, wie ich die Wurzel auflösen soll, damit ich sie nacher in der Zielfunktion ableiten kann.

Zielfunktion: [mm] M(h)=2pi*Wurzel(36-h^2)*h [/mm]


Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Max. Zylinder in Halbkugel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Fr 18.05.2012
Autor: Diophant

Hallo und

[willkommenvh]

Du bist schon sehr weit gekommen, es ist bis dahin alles richtig, jetzt nicht verzweifeln: die Wurzel kann man nicht auflösen, du musst die Zielfunktion so wie sie ist ableiten. Das einzige, was du noch tun könntest, ist folgender Trick:

ziehe das hintere h als Faktor in die Wurzel hinein (aber beachte, dass du da mit h noch etwas tun musst!). Nutze dann die Tatsache aus, dass die Wurzelfunktion streng monoton ist. So eine Wurzel hat nämlich genau aus diesem Grund genau dort ihr Maximum, wo ihr Inhalt ebenfalls ein Maximum besitzt. Und der Inhalt ist ganzrational...


Gruß, Diophant

Bezug
        
Bezug
Max. Zylinder in Halbkugel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Fr 18.05.2012
Autor: fred97

Bedenke:  M(h) ist maximal [mm] \gdw M(h)^2 [/mm] ist maximal.

Maximiere also die Funktion

   [mm] $F(h)=M(h)^2= [/mm] 4 [mm] \pi^2(36-h^2)h^2$ [/mm]

FRED

Bezug
                
Bezug
Max. Zylinder in Halbkugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Fr 18.05.2012
Autor: Diophant

Hallo FRED,

ja, deine Begründung ist besser. Ich habe mal wieder viel zu kompliziert gedacht. :-)

Gruß, Diophant

Bezug
                
Bezug
Max. Zylinder in Halbkugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Fr 18.05.2012
Autor: greenhue

Vielen Dank euch beiden, Rechnung aufgegangen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]