Max. ONS in L²([a,b]x[c,d]) < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] \{e_n\} [/mm] ein maximales Orthonormalsystem in [mm] L^2([a,b],K) [/mm] und [mm] \{f_n\} [/mm] ein max. ONS in [mm] L^2([c,d],K). [/mm]
Zu zeigen ist, dass durch [mm] g_{n,m}(s,t):=e_n(s)f_m(t) [/mm] ein maximales ONS [mm] \{g_{n,m}:n,m \in \mathbb{N}\} [/mm] in [mm] L^2([a,b]x[c,d],K) [/mm] gegeben ist. |
Dass es sich um ein ONS handelt, habe ich - denke ich - bereits beweisen können. Ich weiß aber nicht genau, wie ich zeigen könnte, dass dieses auch maximal ist.
Mein Ansatz war der Folgende: Sei x [mm] \in L^2([a,b]x[c,d],K) [/mm] mit [mm] =0 [/mm] für alle n,m.
In Analysis wurden leider bisher keine Mehrfachintegrale behandelt, aber ich denke, man kann hier den Satz von Fubini anwenden, dann ergäbe sich also:
[mm] 0=\int_{[a,b]x[c,d]}e_n(s)f_m(s) \overline{x(s,t)}d(s,t)=\int_a^be_n(s)(\int_c^df_m(t)\overline{x(s,t)}dt)ds=\int_a^be_n(s)ds=>
[/mm]
Nun folgt zunächst [mm] =0 [/mm] und dann x=0 jeweils aus der Maximalität der [mm] e_n- [/mm] bzw. [mm] f_n- [/mm] Systeme. Ich bin mir allerdings unsicher, ob ich die Funktion x korrekt behandelt habe bzw. wäre allgemein dankbar für eine Bestätigung meines Vorgehens... oder eben für einen Alternativvorschlag, sollte meine Lösung falsch sein.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Mo 12.11.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|