www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Max. Element ortho. Teilmengen
Max. Element ortho. Teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Element ortho. Teilmengen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 14.12.2004
Autor: Junx

Hi,
ich hab hier eine Aufgabe bei der ich nicht so recht weiterkomme.
Vielleicht kann mir ja jemand einen kleinen Hinweis geben.

Eine Teilmenge T eines euklidischen Raumes V heißt orthogonal ,
falls ihre Elemente verschieden von 0 und paarweise orthogonal sind. Zeige, dass T linear unabhängig ist und dass die bezüglich Inklusion partiell geordnete Menge aller orthogonalen Teilmengen von V mindestens ein maximales Element hat. Sind diese immer Basen von V?

Also die lineare Unabhängigkeit leuchtet mir ja ein, aber ich hab irgendwie keine Idee, wie ich das zeigen soll.

Junx

        
Bezug
Max. Element ortho. Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Mi 22.12.2004
Autor: Julius

Hallo!

Sind [mm] $\{v_1,\ldots,v_n\}$ [/mm] beliebig aus $T$ gewählt mit

$0 = [mm] \lambda_1 v_1 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_{i-1}v_{i-1} [/mm] + [mm] \lambda_i v_i [/mm] + [mm] \lambda_{i+1}v_{i+1} [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n v_n$, [/mm]

so folgt:

[mm] $\lambda_i \langle v_i,v_i \rangle [/mm] = [mm] \lambda_1 \langle v_1,v_i \rangle [/mm] + [mm] \ldots \lambda_{i-1} \langle v_{i-1}, v_i \rangle [/mm] + [mm] \lambda_i \langle v_i,v_i \rangle [/mm] + [mm] \lambda_{i+1} \langle v_{i+1}, v_i \rangle [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n \langle v_n,v_i \rangle [/mm] = [mm] \langle \lambda_1 v_1 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_{i-1}v_{i-1} [/mm] + [mm] \lambda_i v_i [/mm] + [mm] \lambda_{i+1}v_{i+1} [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n v_n, v_i \rangle [/mm] = [mm] \langle [/mm] 0, [mm] v_i \rangle [/mm] = 0$,

also:

[mm] $\lambda_i \langle v_i,v_i \rangle [/mm] = 0$

und daher

[mm] $\lambda_i=0$ [/mm]

wegen

[mm] $v_i \ne [/mm] 0$, also auch: [mm] $\langle v_i,v_i \rangle \ne [/mm] 0$.

Zur anderen Frage: Betrachte doch einfach die Vereinigungsmenge der partiell geordneten Menge aller orthogonalen Teilmengen von $V$. Diese ist wieder linear unabhängig.

Ob sie dann auch notwendig ein Basis ist? Dazu müsste man wissen, ob es in jedem euklidischen Raum eine Orthogonalbasis gibt. Dann wäre diese ja in dem maximalen Element enthalten. Im Falle einer existierenden abzählbaren (oder endlichen) Basis ist das auf jeden Fall so.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]