www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Max-Likelihood-Schätzer
Max-Likelihood-Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max-Likelihood-Schätzer: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:33 Sa 16.10.2010
Autor: NightmareVirus

Aufgabe
Seien [mm]X_1,\ldots,X_n[/mm] stochastisch unabhänigge und identisch verteilte Zufallsvariablen auf einem Wahrscheinlichkeitsraum [mm](\Omega,\mathcal{A},P)[/mm]. Weiter besitze [mm]X_i[/mm] für [mm]i \leq i \leq n[/mm] die Riemann-Dichte

[mm]f_{\lambda}(x) \;=\; e^{-\frac{x}{y}-\ln(\lambda)}, \quad x > 0[/mm]

wobei [mm]\lambda > 0[/mm] ein unbekannter Parameter sei.
Beweisen oder widerlegen sie folgende Aussagen:

(1) Die log-Likelihoodfunktion [mm]l[/mm] ist gegeben durch [mm]l(\lambda) = -n(\frac{\overline{x}}{\lambda}+\ln(\lambda))[/mm] für [mm]\lambda > 0[/mm]
(2) Der Maximum-Likelihood-Schätzer [mm]\hat{\lambda}[/mm] für [mm]\lambda[/mm] ist gegeben durch [mm]\lambda = \frac{1}{\overline{X}}[/mm].
(3) Der Maximum-Likelihood-Schätzer [mm]\hat{\lambda}[/mm] für [mm]\lambda[/mm] ist erwartungstreu für [mm]\lambda[/mm].
(4) Für den Maximum-Likelihood-Schätzer [mm]\hat{\lambda}[/mm] für [mm]\lambda[/mm] gilt [mm]l''(\hat{\lambda}) > 0[/mm].
(5) Es gilt [mm]X_1 \sim Exp(\frac{1}{\lambda}[/mm]



(1) ist richtig, denn
[mm]l(\lambda) = \sum_{i=1}^{n}{\ln(e^{-\frac{x_i}{\lambda}-\ln(\lambda)}} = n \cdot (-\frac{\overline{x}}{\lambda}-\ln(\lambda)) = -n \cdot (\frac{\overline{x}}{\lambda}+\ln(\lambda))[/mm]

(2) ist falsch, denn
[mm]l'(\lambda) = (-n \cdot (\frac{\overline{x}}{\lambda}+\ln(\lambda)))' = (-n\frac{\overline{x}}{\lambda})' - (n\cdot\ln(\lambda))' \overset{!}{=} 0 [/mm]
Das ist äquivalent zu
[mm]\frac{n\overline{x}}{\lambda^2} - \frac{n}{\lambda} = 0[/mm]
[mm]\Rightarrow \frac{n\overline{x}}{\lambda^2} = \frac{n}{\lambda}[/mm]
[mm]\Rightarrow n\overline{x} = n\lambda[/mm]
Also
[mm]\hat{\lambda} = \overline{x} \neq \frac{1}{\overline{x}}[/mm]

(3) Hier komme ich nicht weiter. Ich würde jetzt eigentlich den (richtige) ML-Schätzer in [mm]l(\lambda)[/mm] einsetzen d.h.
[mm]\ln(\overline{x}) = -n(\frac{\overline{x}}{\overline{x}} + \ln(\overline{x}) = -n(1 + \ln(\overline{x}) \overset{!}{=} \overline{x}[/mm]

Bei erwartungstreue liefert der Schätzer eingesetzt in die Funktion den Erwartungswert oder den geschätzen Erwartungswert(?) der Verteilung. aber iwie klappt das hier nicht.

(4) ist falsch, denn Es ist [mm]l''(\lambda) = (\frac{n\overline{x}}{\lambda^2})' - (\frac{n}{\lambda})' = \frac{-2n\overline{x}}{\lambda^3} + \frac{n}{\lambda^2}[/mm]
Und somit ist
[mm]l''(\hat{\lambda}) = l''(\overline{x}) = \frac{-2n\overline{x}}{\overline{x}^3} + \frac{n}{\overline{x}^2} = \frac{-n}{\overline{x}^2} < 0[/mm]

(5) ist richtig, einfach in die standardformel statt [mm]\lambda[/mm], [mm]\frac{1}{\lambda}[/mm] einsetzen.

Also neben einem kurzen blick auf 1,2,4,5  solltet ihr mir bei der 3 helfen. ;)


        
Bezug
Max-Likelihood-Schätzer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 19.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]