www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizenrechnung
Matrizenrechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenrechnung: Bitte um Hilfe bis Montag
Status: (Frage) für Interessierte Status 
Datum: 15:13 Fr 26.11.2004
Autor: Verzweifelte

Hallo ihr schlauen Leute!
Ich habe hier zwei Aufgaben, die ich nicht versteh und die ich bis Montag zu lösen habe.
1) Sei K ein Körper und sei n [mm] \in \IN. [/mm] Sei A=( [mm] a_{ij}) [/mm] mit 1 [mm] \le [/mm] i,j [mm] \le [/mm] n [mm] \in K^{n,n} [/mm] definiert durch

[mm] a_{ij}= [/mm] 1, falls j=i+1
            0, sonst.

Man soll nun zeigen, dass es ein k [mm] \in \IN [/mm] gibt derart, dass  [mm] A^{k} [/mm] die NUllmatrix von  [mm] K^{n,n} [/mm] ist.
Ich weiß nicht, was diese Fallunterscheidung soll, und wie ich die Aufgabe zu lösen habe, bitte deshalb um eine Lösung mit Erklärung! Danke!!!!!!

Eine andere Aufgabe lautet so:
Sei K ein Körper, und sei A [mm] \in K^{n,n} [/mm] für ein n [mm] \ge [/mm] 1. Zeige, dass die folgenden Aussagen äquivalent sind:
i) Für alle B [mm] \in K^{n,n} [/mm] gilt AB=BA.
ii) Es gibt ein  [mm] \lambda \in [/mm] K mit [mm] A=\lambda [/mm] E.

Ich danke für die Erklärungen und den Lösungen!!!
Danke! Die Verzweifelte.

Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]