www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizenrechnung
Matrizenrechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:40 Do 01.06.2006
Autor: chilavert

Aufgabe
Bestimmen sie sign  [mm] \pmat{ 1 & 2 & 3 & ... & n\\ n & n-1 & n-2 & ... & 1 }, [/mm]

sign  [mm] \left(\begin{array}{cccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 2 & 9 & 10 & 8 & 12 & 4 & 6 & 1 & 11 & 7 & 5 \\ \end{array}\right) [/mm]

hallo, also da ich die letzten wochen gut durch meine aufgabe kam, habe ich nun bei der letzten ein problem. was muss ich  hier machen?und wie?ich verstehe die ganze aufgabe nicht und muss sie morgen früh abgeben. ich hoffe mir kann jemand so kurzfristig helfen

        
Bezug
Matrizenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:47 Do 01.06.2006
Autor: chilavert

also die  11 12 und 7 5 sollen auch noch dahinter sein nicht daneben, kann ich aber nciht anders darstellen,macht das heir von allein so

Bezug
        
Bezug
Matrizenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Do 01.06.2006
Autor: mathiash

Hallo und guten Morgen,

Du musst das Signum der Permutationen bestimmen, und zwar so: Schreibe die Permutationen als Produkt von Transpositionen,
und das Signum ist 1, wenn die Zahl der Transp. gerade ist, und -1 sonst.

Geh so vor: Forme die permutationen durch wiederholtes Vertauschen von je zwei Elementen in die Folge [mm] 1\ldots [/mm] n um.
Zähle die Anzahl der Vertauschungen, und deren Paritaet (gerade/ungerade) liefert Dir das Signum.

Dabei musst Du Dich nicht drum kümmern, ob Du die minimale Anzahl Vertauschungen findest oder nicht - bei jeder
Folge von Vertauschungen, die die sortierte Folge [mm] 1\ldots [/mm] n liefert, ist die Paritaet gleich.

Gruss + viel Erfolg.

Mathias

Bezug
                
Bezug
Matrizenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Do 01.06.2006
Autor: chilavert

hallo,danke für die antwort. ich habe mich nun mal schlau gelesen, komme hier aber uf keinen ansatz. kannst du mir wohl mal den ansatz heir hinschreiben wie man anfangen muss,ich glaube das ist mien größtes problem. ich muss das nämlich gegen elf schon abgeben

Bezug
                        
Bezug
Matrizenrechnung: Lösung schon da!
Status: (Antwort) fertig Status 
Datum: 09:35 Do 01.06.2006
Autor: Gnometech

Guten Morgen!

Mathias hat die Antwort doch gegeben...

Nimm die untere Zahlenfolge. Die kannst Du durch wiederholtes Tauschen von je zwei Elementen in die richtige Reihenfolge bringen - als ersten Schritt kannst Du z.B. die 1 mit der 3 tauschen, so dass die 1 vorn steht usw.

Schreib einfach mit, wieviele solche Vertauschungen Du machst, um das Ding in die richtige Reihenfolge (1 - 12) zu bringen. Ist die Anzahl ungerade, so ist das sign gleich -1, sonst ist es 1.

Aber genau das steht da oben schon...

Viel Erfolg!
Lars

Bezug
                                
Bezug
Matrizenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Do 01.06.2006
Autor: chilavert

hö das versteh ich jetzt nicht?kannst du mir nicht mal bitte den anfang machen?ist echt wichtig,ich komm da nicht so drauf

Bezug
                                        
Bezug
Matrizenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 Do 01.06.2006
Autor: chilavert

muss man da eine nachbarschaftsvertauschung machen?

Bezug
                                                
Bezug
Matrizenrechnung: Kann man...
Status: (Antwort) fertig Status 
Datum: 09:22 Fr 02.06.2006
Autor: Gnometech

... muss man aber nicht.

Hm, wir haben Dir jetzt zwei Mal erklärt, wie es geht. Soll ich es wirklich noch ausführen? Es ist nicht so kompliziert...

Na schön:

Die Permutation, die wir haben ist:

$(3,2,9,10,8,12,4,6,1,11,7,5)$

Durch fortgesetztes Tauschen zweier Elemente (das müssen nicht benachbarte sein!) müssen wir auf die richtige Reihenfolge kommen. Zunächst wird 3 mit 1 getauscht, damit letztere vorn steht:

$(1,2,9,10,8,12,4,6,3,11,7,5)$

Dann 3 mit 9:

$(1,2,3,10,8,12,4,6,9,11,7,5)$

4 mit 10:

$(1,2,3,4,8,12,10,6,9,11,7,5)$

5 mit 8:

$(1,2,3,4,5,12,10,6,9,11,7,8)$

6 mit 12:

$(1,2,3,4,5,6,10,12,9,11,7,8)$

7 mit 10:

$(1,2,3,4,5,6,7,12,9,11,10,8)$

8 mit 12:

$(1,2,3,4,5,6,7,8,9,11,10,12)$

Und schließlich 11 mit 10:

$(1,2,3,4,5,6,7,8,9,10,11,12)$

Das waren jetzt 8 Tauschungen, wenn ich mich nicht vertu und damit ist das Signum +1. (Da [mm] $(-1)^8 [/mm] = +1$)

Wo ist das Problem? :-) Es macht übrigens wie oben schon angemerkt gar keinen Unterschied, auf welchem Weg das Ergebnis zustande kommt - wenn Du nur Nachbarschaftsvertauschungen machst, dauert es länger, aber es wird auch eine gerade Anzahl sein.

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]