www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizenkörper
Matrizenkörper < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Sa 10.11.2007
Autor: nickjagger

Aufgabe
Zeigen Sie, dass H = { [mm] \pmat{ a & b \\ -\overline{b} & \overline{a} } [/mm] | a,b [mm] \in \IC [/mm] } mit Addition und Multiplikation von Matrizen kein Körper ist und die gleichung X² + 1 = 0 unendlich viele Lösungen hat.  

hab versucht Addition und Multiplikation der Matrizen durchzuführen...

aber hat mich nicht weitergebracht...

wie kann ich beweisen, dass es kein Körper ist?? und vor allem warum gibt es unendlich viele lösungen.....

        
Bezug
Matrizenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Sa 10.11.2007
Autor: max3000

Hallo.

Du sollst beweisen, dass das ganze kein Körper ist.
Also kaust du mal die ganzen Körperaxiome durch und schaust, ob es da irgendetwas gibt, was nicht zutrifft. Das solltest du eigentlich finden.

Die Gleichung [mm] X^2+1=0 [/mm] soll unendlich viele Lösungen haben.

Da multiplizierst du einfach mal ganz allgemein ein x mit sich selbst.


[mm] \pmat{a & b \\ -\overline{b} & \overline{a}}*\pmat{a & b \\ -\overline{b} & \overline{a}} [/mm]
[mm] =\pmat{a^2-b*\overline{b} & b(a+\overline{a}) \\ -a\overline{b}+\overline{a}b & \overline{b}^2+\overline{a}^2} [/mm]

Der Rest ist jetzt nur noch Rechnen mit komplexen Zahlen.
Versuche diese Gleichung einfach mal zu vereinfachen, indem du a und b in Real- und Imaginärteil aufteilst.

Noch eine 2 kurze Fragen:

x ist doch aus H oder nicht?
Habt ihr die Einheitsmatrix "1" genannt?

Gruß
Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]