www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen und Basisvektoren
Matrizen und Basisvektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen und Basisvektoren: Erklärung
Status: (Frage) beantwortet Status 
Datum: 02:14 Mo 05.06.2006
Autor: maggi20

Hallo! Tut mir leid habe noch eine Verständindfrage. Könnte mir da vielleicht jemand bitte weiterhelfen. habe mich lange damit beschäftigt bin aber nicht drauf gekommen. Wie ändert sich Mf wenn man die Reihenfolge der Baisisvektoren ändert? Es sei f eine lineare Abbildung von V nach W.     Bv sei eine Basis von V, Bw eine Basis von W, Mf die Matrix von f bzgl. einer vorgegebenen Reihenfolge der basisvektoren.
Liebe Grüsse
Maggi

        
Bezug
Matrizen und Basisvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:58 Mo 05.06.2006
Autor: felixf

Hallo Maggi!

> Hallo! Tut mir leid habe noch eine Verständindfrage. Könnte
> mir da vielleicht jemand bitte weiterhelfen. habe mich
> lange damit beschäftigt bin aber nicht drauf gekommen. Wie
> ändert sich Mf wenn man die Reihenfolge der Baisisvektoren

Also $f : [mm] K^n \to K^n$ [/mm] ist eine lineare Abbildung und $M f [mm] \in K^{n \times n}$ [/mm] ist die zugehoerige Darstellungsmatrix zur Basis [mm] $(v_1, \dots, v_n)$, [/mm] und du willst jetzt wissen, was passiert, wenn du die Reihenfolge der [mm] $v_i$ [/mm] aenderst?

Wenn $M f = [mm] (a_{ij})_{ij}$ [/mm] ist, dann ist ja per Definition [mm] $f(v_j) [/mm] = [mm] \sum_{i=1}^n a_{ij} v_i$. [/mm]

So. Wenn du jetzt die Reihenfolge der [mm] $v_i$'s [/mm] aenderst, etwa ueber die Permutation [mm] $\sigma$, [/mm] die [mm] $v_i$ [/mm] auf [mm] $v_{\sigma(i)}$ [/mm] abbildet, dann ist [mm] $v_{\sigma(j)} [/mm] = [mm] \sum_{i=1}^n a_{\sigma(i) \sigma(j)} v_{\sigma(i)}$. [/mm]

Also ist der $(i, j)$-Eintrag von der Darstellungsmatrix zur Basis [mm] $(v_{\sigma(1)}, \dots, v_{\sigma(n)})$ [/mm] gerade die Matrix [mm] $(a_{\sigma(i) \sigma(j)})_{ij}$: [/mm] Du tauscht also die Zeilen und Spalten genauso, wie du die Basisvektoren tauscht!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]