www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen : Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:58 Mi 26.01.2005
Autor: Lara

Hallo
ich habe zwei Aufgaben die ich bis Freitag lösen muss aber überhaupt nicht weiter komme. ich hab es mit meiner lern gruppe versucht aber waren nicht so erfolgreich kurz gesagt wir haben nichts auf die reihe gekrigt.
Aufgabe1 sei U [mm] \subseteqV:= \IR^5 [/mm] der Untervektorraum, der von den Vektoren  [mm] \pmat{2\\3\\1\\4\\3}, \pmat{0\\5\\1\\-1\\3}, \pmat{4\\0\\1\\1\\-2} [/mm]
erzeugt wird. Berechne eine Basisi für [mm] U^0= {\varphi \in V^* :\varphi |u \equiv0} [/mm]

Aufgabe2:
Seien [mm] v_1, [/mm] ..., [mm] v_n \in K^n [/mm] Spaltenvektoren und [mm] ^tv_j [/mm] die transponierten Vektoren. Zeige, dass folgende Aussagen äquivalent sind.
1.) [mm] {v_1, ... ,v_n} [/mm] ist eine Basis für [mm] K^n [/mm] .
2.) [mm] v_i ^tv_j \in [/mm] Mat (n,K) (1 [mm] \le [/mm] i, j [mm] \le [/mm] n) bilden eine Basis von Mat (n,K)

bitte hilft uns wir kommen einfach nicht weiter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Matrizen : zur 1
Status: (Antwort) fertig Status 
Datum: 16:27 Mi 26.01.2005
Autor: Julius

Hallo!

Löst einfach mit dem Gauß-Algorithmus das LGS

[mm] $\begin{pmatrix} 2 & 3 & 1 & 4 & 3\\ 0 & 5 & 1 & -1 & 3 \\ 4 & 0 & 1 & 1 & -2\end{pmatrix} \cdot \begin{pmatrix} x_1 \\x_2 \\x_3 \\ x_4 \\ x_5 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ [/mm]

und bestimmt eine Basis [mm] $\{x_1,\ldots,x_k\}$ [/mm] dieses Lösungsraumes.

Dann sind die [mm] $\{\varphi_{x_1},\ldots,\varphi_{x_k}\} \subset U^0 \subset V^{\star}$ [/mm] mit

[mm] $\varphi_{x_j}(y):= x_j^T [/mm] y$

eine Basis von [mm] $U^0$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]