www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 So 02.12.2007
Autor: Marinouk

Aufgabe
Sei K ein Körper und A= [mm] \pmat{ a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 } \in [/mm] M3,3(K)

Für [mm] \lambda \in [/mm] K sei A' die Matrix, die aus A durch die Addition des [mm] \lambda-fachen [/mm] der 1. Zeile auf die 3. Zeile hervorgeht. Finden Sie B [mm] \in [/mm] M3,3(K) mit B*A=A'.

Ich weiß nicht,wie ich B finden kann, so das gilt B*A=A'. Muss ich ferner die 1. Zeile mit [mm] \lambda [/mm] multiplizieren, sprich [mm] \lambda [/mm] a11, [mm] \lambda [/mm] a12 et. und dann zur 3. Zeile addieren? oder wie verstehe ich das?

Lieben Gruß


        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mo 03.12.2007
Autor: angela.h.b.


> Sei K ein Körper und A= [mm]\pmat{ a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 } \in[/mm]
> M3,3(K)
>  
> Für [mm]\lambda \in[/mm] K sei A' die Matrix, die aus A durch die
> Addition des [mm]\lambda-fachen[/mm] der 1. Zeile auf die 3. Zeile
> hervorgeht. Finden Sie B [mm]\in[/mm] M3,3(K) mit B*A=A'.


Hallo,

gesucht ist also eine Matrix B mit

[mm] B*\pmat{ a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 }=\pmat{ a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 +\lambda a_{11}& a32+\lambda a_{12} & a33+\lambda a_{13} } [/mm]

Das Stichwort sind hier die [url=http://de.wikipedia.org/wiki/Elementarmatrix#Einfluss_der_Elementarmatrizen_auf_andere_Matrizen]Elementarmatrizen[ /url], wobei die im angegebenen Link v. der anderen Seite an die Matrix multipliziert werden. Du mußt die Sache dort also noch etwas modifizieren, aber als Anregung ist es bestimmt brauchbar.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]