www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Matrixnormen
Matrixnormen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixnormen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 08.04.2010
Autor: Rolfi

Aufgabe 1
A [mm] \in \IR^{nxn} [/mm]
Folgende Äquivalenzen gelten für Matrixnormen:

[mm] \bruch{1}{\wurzel{n}} \parallel [/mm] A [mm] \parallel_1 \le \parallel [/mm] A [mm] \parallel_2 \le \wurzel{n} \parallel [/mm] A [mm] \parallel_1 [/mm]

Aufgabe 2
Die Spaltensummenform ist die zugeordnete Matrixnorm zu [mm] \parallel [/mm] x [mm] \parallel_1 [/mm]

Hallo miteinander!

Ich habe gerade beim Durchblättern von ein paar Skripten [mm] (http://www.mathematik.uni-ulm.de/numerik/teaching/ss06/NUM1a/Normen_1.pdf) [/mm] die obigen Definitionen gefunden. Ich hab nur irgendwie nicht den blassesten Schimmer wie man auf das kommt?
Es handelt sich hier um die üblichen p-Normen (1 Spaltensumme, [mm] \infty [/mm] Zeilensumme...)

[mm] \bruch{1}{\wurzel{n}} \parallel [/mm] A [mm] \parallel_1 \le \parallel [/mm] A [mm] \parallel_2 [/mm]

[mm] \bruch{1}{\wurzel{n}} \max_{1 \le j \le n} \summe_{i=1}^{n} |a_{i,j}| \le \wurzel{\summe_{i,j=1}^{n} a^{2}_{i,j}} [/mm]

// quadrieren

[mm] \bruch{1}{n} \max_{1 \le j \le n} \summe_{i=1}^{n} a^{2}_{i,j} \le \summe_{i,j=1}^{n} a^{2}_{i,j} [/mm]

// * n

[mm] \max_{1 \le j \le n} \summe_{i=1}^{n} a^{2}_{i,j} \le \summe_{i,j=1}^{n} a^{2}_{i,j} [/mm] * n

// summen aufbrechen

[mm] \max_{1 \le j \le n} \summe_{i=1}^{n} a^{2}_{i,j} \le [/mm] n * [mm] \summe_{i=1}^{n} \summe_{j=1}^{n} a^{2}_{i,j} [/mm]

aber wie schätzt man dann ab? bzw ist das überhaupt die richtige vorgehensweise?

ad 2)
Was bedeutet "zugeordnet"?
entnommen von:
http://www.scai.fraunhofer.de/fileadmin/ArbeitsgruppeTrottenberg/SS06_duis/kap2.pdf (seite 12)

Ich bin hier ehrlich gesagt etwas irritiert durch die verschiedenen Normen.





vielen dank für jede hilfe!

mfg
rolfi

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Matrixnormen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Do 08.04.2010
Autor: felixf

Halo!

> A [mm]\in \IR^{nxn}[/mm]
>  Folgende Äquivalenzen gelten für
> Matrixnormen:
>  
> [mm]\bruch{1}{\wurzel{n}} \parallel[/mm] A [mm]\parallel_1 \le \parallel[/mm]
> A [mm]\parallel_2 \le \wurzel{n} \parallel[/mm] A [mm]\parallel_1[/mm]
>  Die Spaltensummenform ist die zugeordnete Matrixnorm zu
> [mm]\parallel[/mm] x [mm]\parallel_1[/mm]
>  Hallo miteinander!
>  
> Ich habe gerade beim Durchblättern von ein paar Skripten
> [mm](http://www.mathematik.uni-ulm.de/numerik/teaching/ss06/NUM1a/Normen_1.pdf)[/mm]
> die obigen Definitionen gefunden. Ich hab nur irgendwie
> nicht den blassesten Schimmer wie man auf das kommt?
>  Es handelt sich hier um die üblichen p-Normen (1
> Spaltensumme, [mm]\infty[/mm] Zeilensumme...)
>  
> [mm]\bruch{1}{\wurzel{n}} \parallel[/mm] A [mm]\parallel_1 \le \parallel[/mm]
> A [mm]\parallel_2[/mm]
>  
> [mm]\bruch{1}{\wurzel{n}} \max_{1 \le j \le n} \summe_{i=1}^{n} |a_{i,j}| \le \wurzel{\summe_{i,j=1}^{n} a^{2}_{i,j}}[/mm]
>  
> // quadrieren
>  
> [mm]\bruch{1}{n} \max_{1 \le j \le n} \summe_{i=1}^{n} a^{2}_{i,j} \le \summe_{i,j=1}^{n} a^{2}_{i,j}[/mm]

Seit wann ist $(a + [mm] b)^2 [/mm] = [mm] a^2 [/mm] + [mm] b^2$? [/mm]

So kannst du hier nicht argumentieren. Du kannst aber mal versuchen, die Ungleichung von Cauchy-Schwarz mit zu verwenden.

> ad 2)
>  Was bedeutet "zugeordnet"?

Die [mm] $\|v\|_1$ [/mm] zugeordnete Matrixnorm [mm] $\|A\|_1$ [/mm] ist doch definiert als [mm] $\|A\|_1 [/mm] := [mm] \sup_{x \in \IR^n \atop \|x\|_1 = 1} \|A x\|_1$. [/mm]

(siehe Seite 10 im Skript, Definition 2.3)

Du musst also zeigen, dass fuer alle $x [mm] \in \IR^n$ [/mm] mit [mm] $\|x\|_1 [/mm] = 1$ gilt [mm] $\|A x\| \le{}$der [/mm] Spaltensummennorm, und dass es einen Vektor $x [mm] \in \IR^n$ [/mm] mit [mm] $\|x\|_1 [/mm] = 1$ gibt mit [mm] $\|A x\|_1$ [/mm] gleich der Spaltensummennorm von $A$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]