www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrixnorm
Matrixnorm < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixnorm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mo 10.12.2007
Autor: pleaselook

Aufgabe
Die zugeordnete Matrixnorm kann verstanden werden als die größte Abbildungsausdehnung von A bezüglich der entsprechenden Einheitskugel [mm] (B_2). [/mm]
Sei A [mm] =\pmat{1&1\\1&2}. [/mm]  
Bestimmen Sie graphisch die der 1-Vektornorm zugeordnete Matrixnorm.
Zeichnen Sie die Einheitskugel und das entsprechende Bild und bestimmen Sie dann numerisch das Maximum von [mm] A(B_2). [/mm]

Abend.

Also wie die Einheitskugel [mm] B_2 [/mm] für die 1-Matrixnorm aussieht, weiß ich.
Wie kann ich jetzt das Bild von [mm] A(B_2) [/mm] bestimmen. Muß ich da jeden Punkt einsetzen, oder kann ich das auch eleganter machen. (z.B. nur die Eckpunkte?)

Nen Tipp wär echt nett&hilfreich. Bis dann...

        
Bezug
Matrixnorm: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Di 11.12.2007
Autor: Somebody


> Die zugeordnete Matrixnorm kann verstanden werden als die
> größte Abbildungsausdehnung von A bezüglich der
> entsprechenden Einheitskugel [mm](B_2).[/mm]
>  Sei A [mm]=\pmat{1&1\\1&2}.[/mm]  
> Bestimmen Sie graphisch die der 1-Vektornorm zugeordnete
> Matrixnorm.
>  Zeichnen Sie die Einheitskugel und das entsprechende Bild
> und bestimmen Sie dann numerisch das Maximum von [mm]A(B_2).[/mm]
>  Abend.
>  
> Also wie die Einheitskugel [mm]B_2[/mm] für die 1-Matrixnorm
> aussieht, weiß ich.
> Wie kann ich jetzt das Bild von [mm]A(B_2)[/mm] bestimmen. Muß ich
> da jeden Punkt einsetzen, oder kann ich das auch eleganter
> machen. (z.B. nur die Eckpunkte?)
>  
> Nen Tipp wär echt nett&hilfreich. Bis dann...

Betrachte das Problem in einer Eigenbasis von $A$ (Basis aus Eigenvektoren - die in diesem Falle, nebenbei bemerkt, senkrecht aufeinander stehen). Das Bild [mm] $A(B_2)$ [/mm] von [mm] $B_2$ [/mm] unter $A$ ist dann leicht als Ellipse erkennbar und das "Maximum" von [mm] $A(B_2)$ [/mm] an der grossen Halbachse dieser Ellipse ablesbar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]