www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrixdarstellung
Matrixdarstellung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixdarstellung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:24 So 04.01.2009
Autor: harmony.dream

Aufgabe
Es sei B = { [mm] {v_{1}, ..., v_{n}} [/mm] } eine Basis des reelen VR V und [mm] \phi [/mm] : V [mm] \to [/mm] V die durch
[mm] \phi(v_{1}) [/mm] := [mm] v_{2}, [/mm] ... , [mm] \phi(v_{n-1}) [/mm] := [mm] v_{n}, \phi(v_{n}) [/mm] := [mm] v_{1} [/mm]
definierte Lineare Abbildung. Geben Sie die Matrixdarstellung von [mm] \phi-id_{V} [/mm] bezüglich B an. Untersuchen sie [mm] \phi-id_{V} [/mm] auf Injektivität und Surjektivität.

Bräuchte komplette Lösung mit Lösungsweg.
Danke schonmal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrixdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 So 04.01.2009
Autor: angela.h.b.


> Es sei B = [mm] \{{v_{1}, ..., v_{n}}\} [/mm] eine Basis des reelen VR
> V und [mm]\phi[/mm] : V [mm]\to[/mm] V die durch
> [mm]\phi(v_{1})[/mm] := [mm]v_{2},[/mm] ... , [mm]\phi(v_{n-1})[/mm] := [mm]v_{n}, \phi(v_{n})[/mm]
> := [mm]v_{1}[/mm]
>  definierte Lineare Abbildung. Geben Sie die
> Matrixdarstellung von [mm]\phi-id_{V}[/mm] bezüglich B an.
> Untersuchen sie [mm]\phi-id_{V}[/mm] auf Injektivität und
> Surjektivität.
>  Bräuchte komplette Lösung mit Lösungsweg.
>  Danke schonmal

Hallo,

[willkommenmr].

Lies Dir bitte einmal die Forenregeln durch, Du wirst feststellen, daß dieses Forum nicht als Lösungsmaschine gedacht ist.

Bei der Entwicklung von Lösungen ausgehend von den  Lösungsansaetzen und im Dialog mit den Fragenden helfen wir jedoch gerne und oft durchaus ausdauernd, und wenn Du an so etwas Interesse hast, bist Du bei uns richtig.

Vielleicht schilderst Du ggf. mal, wie  weit Du bisher gekommen bist.

In der darstellenden Matrix bzgl. B müssen in den Spalten die Bilder der Basisvektoren von B in Koordinaten bzgl B stehen.

Du brauchst also erstmal für jedes i=1,...,n

[mm] (\phi [/mm] - [mm] id_V)(v_i)= [/mm] ...

Gruß v. Angela

Bezug
                
Bezug
Matrixdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 So 04.01.2009
Autor: harmony.dream

Ich hätte gerne einen Ansatz geliefert, doch leider weiß ich gar nicht wie ich mit dieser Aufgabe umgehen muss.
Ich werde mich aber an die Regeln halten.


Bezug
                        
Bezug
Matrixdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 So 04.01.2009
Autor: angela.h.b.


> Ich hätte gerne einen Ansatz geliefert, doch leider weiß
> ich gar nicht wie ich mit dieser Aufgabe umgehen muss.

Hallo,

ich hab' Dir doch oben gesagt, wie Du anfangen kannst.

Das kannst Du ja erstmal umsetzen, dann sehen wir weiter. es ist nicht schwer.

Gruß v. Angela

Bezug
                                
Bezug
Matrixdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 So 04.01.2009
Autor: harmony.dream

kannst du mir vllt sagen was dieses [mm] \phi-id_{V} [/mm] bedeutet?

Bezug
                                        
Bezug
Matrixdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 So 04.01.2009
Autor: angela.h.b.


> kannst du mir vllt sagen was dieses [mm]\phi-id_{V}[/mm] bedeutet?

Hallo,

die Abbildung [mm] \Phi [/mm] wurde Dir ja angegeben.

[mm] id_V [/mm] ist die Identität auf V, dh. die jeden vektor sich selbst zuordnet.

[mm] \phi [/mm] - [mm] id_V [/mm] wieder eine Abbildung, nämlich die Differenz der beiden. Nach Voraussetzung ist [mm] \phi [/mm] linear, [mm] id_V [/mm] ist linear, also ist [mm] \phi [/mm] - [mm] id_V [/mm] eine lineare Abbildung.

Nach Def. der Summe bzw. Differenz von Abbildungen ist

[mm] (\phi [/mm] - [mm] id_V)(x):= \phi(x)- id_V(x) [/mm] für alle [mm] x\in [/mm] V.

Weil die Abbildung [mm] \phi [/mm] - [mm] id_V [/mm] linear ist, brauchst Du nur ihre Funktionswerte auf einer Basis, hier auf [mm] (v_1,...,v_n). [/mm]

Wenn Du die hast, können wir die Matrix aufstellen.

Gruß v. Angela




Bezug
                                                
Bezug
Matrixdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 So 04.01.2009
Autor: harmony.dream

Ich muss diese Abbildung also als Permutation behandeln. Das heißt doch in meinem Fall, dass die Funktionswerte  dann hierauf hinauslaufen.

( [mm] v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}, v_{1} [/mm] )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]