www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Matrixdars. Umkehrabbildung
Matrixdars. Umkehrabbildung < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixdars. Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 So 29.11.2009
Autor: divigolo

Aufgabe
[mm] Umkehrableitung:\alpha:\vecx´ [/mm] = A   [mm] \vec [/mm] x + [mm] \vec [/mm]  c         mit A= [mm] \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} [/mm]       ist

[mm] \alpha^-1 [/mm] : [mm] \vec [/mm]  x´ = A^-1 [mm] \vec [/mm] x - A^-1 [mm] \vec [/mm]  c        mit A^-1 =   [mm] \left( \bruch{1}{A} \right) \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix} [/mm]


So inzwischen hat mir eine Freundin das hier geschickt.
So hat unser Lehrer das geschrieben.
Kann mir das einer erklähren? wieso ist da plötzlich dieses [mm] \alpha^-1 [/mm] : [mm] \vec [/mm] x´ ? und wie löst man denn so etwas? A^-1 =   [mm] \left( \bruch{1}{A} \right) \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix} [/mm]
Kann vll. irgenteiner ein Beispiel mit beliebigen Zaheln machen und es mir erklähren?
Ich habe nämlich leider echt garkeine Ahnung was da genau gemacht wird , was ich danach raus bekomme und vor allem wie ich das anstellen soll... (denn ich habe krankheitsbedingt die letzten 6 stunden Mathe verpasst und schreibe dienstag die klausur  :(. Da mein Lehrer in dieser Zeit nichtm it dem Buch gearbeitet hat finde ich auch keine beispiel oder übungsaufgaben)

PS: das mit den Vektorstrichen habe ich nicht ganz hinbekommen..ich hoffe ihr wisst dennoch was gemeint ist

Dankeschön : )

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrixdars. Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Mo 30.11.2009
Autor: Event_Horizon

Hallo!

Ja, das mit den Vektorstrichen ist nicht so gut. Schreibe \vec{x} und am besten um vor und hinter jede Formel noch ein Dollarzeichen, dann klappt das.


Nun, mit [mm] \alpha [/mm] wird die Abbildung bezeichnet. Dann kann man oft eine Umkehrabbildung angeben, die genau das umgekehrte macht. Also wie Quadrat und Wurzel z.B.

Solche Umkehrabbildungen bezeichnet man gerne mit nem hochgestellten -1, das ist aber keinesfalls eine Potenz, sondern einfach eine Schreibweise!

[mm] f(x)=x^2 [/mm] Umkehrfuntion:  [mm] f^{-1}(x)=\sqrt(x) [/mm]


Nun, der Witz bei einer 2D-Matrix ist, daß man die Umkehrmatrix schnell hinschreiben kann, die ist eben

$  [mm] \bruch{1}{D} \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix} [/mm] $

Dieses D (Ich hab es umbenannt, weil noch ein A verwirrt nur) ist die Determinante der (ursprünglichen) Matrix, es gilt

[mm] D=\sqrt{a_1b_2-a_2b_1} [/mm]

Du kannst dich davon überzeugen: Wendest du auf einen Vektor erst eine Matrix und dann die Umkehrmatrix an, sollte ja wieder der Vektor selbst raus kommen, getreu dem Beispiel [mm] \sqrt{x^2}=x [/mm] (für positive x)

[mm] \underbrace{\underbrace{\pmat{ p & q \\ r & s }}_{A^{-1}}\underbrace{\pmat{ a & b \\ c & d }}_{A}}_{=\pmat{ 1 & 0 \\ 0 & 1 }}\vektor{x\\y}=\vektor{x\\y} [/mm]

Also: Das Produkt der beiden Matrizen muß gleich der Einheitsmatrix sein, denn nur der bildet einen Vektor auf sich selbst ab.

Du kannst ja jetzt mal so tun, als wenn du a, b, c, d kennst, und dann p, q, r, s berechnen. Das ist ein wenig Arbeit, aber es wird eben das raus kommen, was du da eben geschrieben hast.

Bezug
                
Bezug
Matrixdars. Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 30.11.2009
Autor: divigolo

Wunderbare Erklährung dankeschön! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]