www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Matrix / keine EW
Matrix / keine EW < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix / keine EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:47 Mo 24.09.2012
Autor: quasimo

Aufgabe
Die reelle Matrix [mm] A=\pmat{ 0&1&7&0\\-1&0&2&4\\0&0&0&2\\0&0&-2&0 } [/mm]
hat charakeristisches Polynom p = [mm] (z^2 +1)(z^2+4) [/mm] und daher keine reellen Eigenwerte.
Es gilt : [mm] ker(A^2 [/mm] + I) = [mm] <\vektor{1\\0\\0\\0},\vektor{0\\1\\0\\0}> [/mm]
[mm] ker(A^2 [/mm] + 4I) = [mm] <\vektor{-2\\15\\3\\0},\vektor{-18\\-4\\0\\3}> [/mm]

Somit
S= Matrix mit Spaltenvektoren [mm] \vektor{1\\0\\0\\0},\vektor{0\\1\\0\\0},\vektor{-2\\15\\3\\0},\vektor{-18\\-4\\0\\3} [/mm]

[mm] S^{-1} [/mm] A S= [mm] \pmat{ 0&1&&\\-1&0&&\\&&0&2 \\ &&-2&0 } [/mm]


Hallo,
Ich verstehe das Beispiel in meinen Skriptum. Auch das es in eine Primärzerlegung gebracht wird.
Nur verstehe ich nicht wie man auf die zahlen 1,2 in der Nebendiagonale kommt. Muss man ausmultiplizieren um darauf zu kommen?
[mm] S^{-1} [/mm] A S=  [mm] \pmat{ 0&1 &&\\-1&0&&\\&&0&2 \\ &&-2&0 } [/mm]

        
Bezug
Matrix / keine EW: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Mo 24.09.2012
Autor: fred97

Schau mal hier

http://de.wikipedia.org/wiki/Jordansche_Normalform

unter "Reelle jordansche Normalform "

FRED

Bezug
                
Bezug
Matrix / keine EW: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mo 24.09.2012
Autor: quasimo

ah, danke ;)
Ich hab nicht gesegen, dass ich das charakteristische Polynom erst in die altbekannte Form umschreiben muss ..
Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]