www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix gesucht
Matrix gesucht < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix gesucht: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:43 Mo 26.01.2015
Autor: Ne0the0ne

Aufgabe
Bestimmen Sie [mm] \{X \in R^{2,3}|XA=E\}, [/mm] wobei A= [mm] \pmat{ 1 & 1 \\ 2 & -1 \\ 3 & -3 }, [/mm] E= [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] seien.

Hallo,
ich habe schon viel recherchiert, fande aber keine Ansätze in der Richtung.
Ich weiß, dass eine Matrix M multipliziert mit seiner Inversen [mm] M^{-1} [/mm] die Einheitsmatrix E ergibt.

Die gesuchte Matrix X ist eine (2x3)- Matrix.

Mein Ansatz ist bisher, dass ich ein LGS aufgestellt habe, allerdings mit 2 Gleichungen und 3 Unbekannten:
I: a + 2b +3c = 1
II: a - b - 3c = 0

Beim Lösen drehte ich mich dabei nur im Kreis.
Wie gehe ich die Aufgabe am besten an?
Muss ich einer Unbekannten einfach einen Parameter zuweisen?

        
Bezug
Matrix gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Mo 26.01.2015
Autor: fred97


> Bestimmen Sie [mm]\{X \in R^{2,3}|XA=E\},[/mm] wobei A= [mm]\pmat{ 1 & 1 \\ 2 & -1 \\ 3 & -3 },[/mm]
> E= [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] seien.
>  Hallo,
>  ich habe schon viel recherchiert, fande aber keine
> Ansätze in der Richtung.
>  Ich weiß, dass eine Matrix M multipliziert mit seiner
> Inversen [mm]M^{-1}[/mm] die Einheitsmatrix E ergibt.
>  
> Die gesuchte Matrix X ist eine (2x3)- Matrix.
>  
> Mein Ansatz ist bisher, dass ich ein LGS aufgestellt habe,
> allerdings mit 2 Gleichungen und 3 Unbekannten:
>  I: a + 2b +3c = 1
>  II: a - b - 3c = 0
>  
> Beim Lösen drehte ich mich dabei nur im Kreis.
>  Wie gehe ich die Aufgabe am besten an?

Überzeuge Dich davon, das obiges LGS in Zeilennormalform so lautet:

a-c=1
b+2c=0.

Es ist also a=1+c und b=-2c und c frei wählbar.

FRED

>  Muss ich einer Unbekannten einfach einen Parameter
> zuweisen?


Bezug
                
Bezug
Matrix gesucht: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:07 Mo 26.01.2015
Autor: Ne0the0ne

Nach hin- und herrrechnen kame ich nun auf folgende Lösungen:

a=1/3+c
b=1/3-2c
c [mm] \in [/mm] R
d=2/3+f
e=-1/3-2f
f [mm] \in [/mm] R

Da die Matrix "zerlegbar" ist, habe ich eine konstante Matrix und zwei parameter Matrizen erstellt.

X= [mm] \pmat{ 1/3 & 1/3 & 0 \\ 2/3 & -1/3 & 0 } [/mm] + R [mm] \pmat{ 1 & -2 & 1 \\ 0 & 0 & 0 } [/mm] + R [mm] \pmat{ 0 & 0 & 0 \\ 1 & -2 & 1 } [/mm]

Bezug
                        
Bezug
Matrix gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 26.01.2015
Autor: angela.h.b.


> Nach hin- und herrrechnen kame ich nun auf folgende
> Lösungen:
>  
> a=1/3+c
>  b=1/3-2c
>  c [mm]\in[/mm] R
>  d=2/3+f
>  e=-1/3-2f
>  f [mm]\in[/mm] R

Hallo,

das ist richtig.

>  
> Da die Matrix "zerlegbar" ist, habe ich eine konstante
> Matrix und zwei parameter Matrizen erstellt.
>  
> X= [mm]\pmat{ 1/3 & 1/3 & 0 \\ 2/3 & -1/3 & 0 }[/mm] + R [mm]\pmat{ 1 & -2 & 1 \\ 0 & 0 & 0 }[/mm]
> + R [mm]\pmat{ 0 & 0 & 0 \\ 1 & -2 & 1 }[/mm]  

Ja, so könnte man es aufschreiben.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]