www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrix einer liearen Abbildung
Matrix einer liearen Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix einer liearen Abbildung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:40 Fr 06.01.2006
Autor: heine789

Aufgabe
Gegeben sei die Abbildung f: R² -> R² definiert durch
[mm] f(a_{1}, a_{2}) [/mm] := [mm] (a_{1} [/mm] + [mm] 2a_{2}, 2a_{1} [/mm] - [mm] a_{2}) [/mm]
und die Basen
[mm] B_{1} [/mm] = [mm] \{ \vektor{1 \\ 0}, \vektor{0 \\ 1} \}, [/mm]
[mm] B_{2} [/mm] = [mm] \{ \vektor{-1 \\ 2}, \vektor{2 \\ 0} \} [/mm] des R².

Ermitteln Sie die Darstellungsmatrizen von f bzgl. der Basen

b1) [mm] B_{1}, B_{2} [/mm]
b2) [mm] B_{2}, B_{1} [/mm]
b3) [mm] B_{2}, B_{2} [/mm]

Hallo. Ich bins schon wieder.
Kann mir jemand sagen, ob mein Rechenweg für b1) so stimmt?

f( [mm] \pmat{ 1 & 0 \\ 0 & 1 }, \pmat{ -1 & 2 \\ 2 & 0 } [/mm] )
= ( [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] +  [mm] 2\pmat{ -1 & 2 \\ 2 & 0 }, 2\pmat{ 1 & 0 \\ 0 & 1 } [/mm] - [mm] \pmat{ -1 & 2 \\ 2 & 0 } [/mm] )
= ( [mm] \pmat{ -1 & 4 \\ 4 & 1 }, \pmat{ 3 & -2 \\ -2 & 2 } [/mm] )

Hab also einfach die Basen in f eingefügt.

???

MfG heine



        
Bezug
Matrix einer liearen Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Fr 06.01.2006
Autor: Julius

Hallo heine!

> Gegeben sei die Abbildung f: R² -> R² definiert durch
>  [mm]f(a_{1}, a_{2})[/mm] := [mm](a_{1}[/mm] + [mm]2a_{2}, 2a_{1}[/mm] - [mm]a_{2})[/mm]
>  und die Basen
>  [mm]B_{1}[/mm] = [mm]\{ \vektor{1 \\ 0}, \vektor{0 \\ 1} \},[/mm]
>  [mm]B_{2}[/mm] =
> [mm]\{ \vektor{-1 \\ 2}, \vektor{2 \\ 0} \}[/mm] des R².
>  
> Ermitteln Sie die Darstellungsmatrizen von f bzgl. der
> Basen
>  
> b1) [mm]B_{1}, B_{2}[/mm]
>  b2) [mm]B_{2}, B_{1}[/mm]
>  b3) [mm]B_{2}, B_{2}[/mm]
>  
> Hallo. Ich bins schon wieder.
>  Kann mir jemand sagen, ob mein Rechenweg für b1) so
> stimmt?
>  
> f( [mm]\pmat{ 1 & 0 \\ 0 & 1 }, \pmat{ -1 & 2 \\ 2 & 0 }[/mm] )
>  = ( [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] +  [mm]2\pmat{ -1 & 2 \\ 2 & 0 }, 2\pmat{ 1 & 0 \\ 0 & 1 }[/mm]
> - [mm]\pmat{ -1 & 2 \\ 2 & 0 }[/mm] )
>  = ( [mm]\pmat{ -1 & 4 \\ 4 & 1 }, \pmat{ 3 & -2 \\ -2 & 2 }[/mm] )
>  
> Hab also einfach die Basen in f eingefügt.
>  
> ???

Was machst du da? [verwirrt]

Du musst

$f(1,0)$ und $f(0,1)$ berechnen und die entstehenden Vektoren bezüglich der Basis [mm] $B_2$ [/mm] darstellen.

Liebe Grüße
Julius

Bezug
                
Bezug
Matrix einer liearen Abbildung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:02 Fr 06.01.2006
Autor: heine789

Also für b1) dann so

f(1,0) = (1,2)

[mm] \vektor{1 \\ 2} [/mm] = [mm] \vektor{-x \\ 2y} [/mm] + [mm] \vektor{2x \\ 0} [/mm] = [mm] \vektor{x \\ 2y} [/mm]

-> x = 1, y = 1

f(0,1) = (2,-1)

[mm] \vektor{2 \\ -1} [/mm] = [mm] \vektor{-x \\ 2y} [/mm] + [mm] \vektor{2x \\ 0} [/mm] = [mm] \vektor{x \\ 2y} [/mm]

-> x = 2, y = -1/2

A = [mm] \pmat{ 1 & 2 \\ 1 & -\bruch{1}{2}} [/mm]

Kann man hier auch sowas wie eine Probe machen?

Gruß heine

Bezug
                        
Bezug
Matrix einer liearen Abbildung: falsch
Status: (Antwort) fertig Status 
Datum: 18:27 Fr 06.01.2006
Autor: leduart

Hallo heine
> Also für b1) dann so
>  
> f(1,0) = (1,2)
>  
> [mm]\vektor{1 \\ 2}[/mm] = [mm]\vektor{-x \\ 2y}[/mm] + [mm]\vektor{2x \\ 0}[/mm] =
> [mm]\vektor{x \\ 2y}[/mm]

wie kommst du auf die Gleichung?  
du suchst doch x,y die Koordinaten in der Basis B2 also:
[mm]\vektor{1 \\ 2}[/mm] = [mm]x*\vektor{-1 \\ 2}[/mm] + [mm]y*\vektor{2 \\ 0}[/mm] =

> -> x = 1, y = 1

hier ist das Ergebnis zufällig richtig!  

> f(0,1) = (2,-1)
>  
> [mm]\vektor{2 \\ -1}[/mm] = [mm]\vektor{-x \\ 2y}[/mm] + [mm]\vektor{2x \\ 0}[/mm] =
> [mm]\vektor{x \\ 2y}[/mm]

aber hier: [mm]\vektor{2 \\ -1}[/mm] = [mm]x*\vektor{-1 \\ 2}[/mm] + [mm]y*\vektor{2 \\ 0}[/mm]

> -> x = 2, y = -1/2

Anderes Ergebnis.!  

> A = [mm]\pmat{ 1 & 2 \\ 1 & -\bruch{1}{2}}[/mm]

Falsch

> Kann man hier auch sowas wie eine Probe machen?

ja. nimm irgend nen Vektor v=(x1,x2)  in der Basis B1 bilde ihn mit f ab, schreibe ihn als Linearkombination der 2 Basisvektoren B2.also [mm] f(v)=y1*b_{21}+y2*b_{22} [/mm]
dann muss gelten: [mm] A*\vektor{x1 \\ x2}=\vektor{y1 \\ y2} [/mm]
Gruß leduart

Bezug
                                
Bezug
Matrix einer liearen Abbildung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Sa 07.01.2006
Autor: heine789

Danke für dein Hinweis!
Da hab ich mal wieder was verbrochen...

MfG heine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]