www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Matrix diagonalisierbar
Matrix diagonalisierbar < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix diagonalisierbar: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:04 Mi 10.05.2023
Autor: Markus_Konrad_1

Aufgabe
Gegeben sei die Matrix $A = [mm] \begin{pmatrix} 1 & -1 \\ -3 & -1 \end{pmatrix}$ [/mm]

a)Argumentiere, dass A diagonalisierbar ist
b) Diagonalisiere die Matrix
c) Berechne durch diese Zerlegung [mm] $A^{1002}$ [/mm]



Schönen guten Tag,

ich würde a und b quasi in einem machen.

Eine quadratische Matrix A heißt diagonalisierbar, wenn es eine Matrix B gibt mit $ A = [mm] BDB^{-1}$ [/mm] wobei D eine Diagonalmatrix ist.

In einem ersten Schritt bestimme ich die Eigenwerte von A.

[mm] $\chi_A [/mm] = [mm] \lambda^2 [/mm] -4$ womit A die Eigenwerte [mm] $\lambda_1 [/mm] = -2$ und [mm] $\lambda_2 [/mm] = 2$ hat.

Somit wäre die Diagonalmatrix $D =  [mm] \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$ [/mm]

Die Matrix $B$ besteht aus den zugehörigen Eigenvektoren - also die Spalten von B sind die EV von A.

Somit

$ [mm] \bigl( \begin{pmatrix} 1 & -1 \\ -3 & -1 \end{pmatrix} [/mm] + 2  [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (x,y)^T [/mm] = [mm] (0,0)^T$ [/mm]

was im GLS

$3x -y = 0$
$-3x+y=0$ mündet. Woraus folgt, dass jeder Vektor $ [mm] \begin{pmatrix} t \\ 3t \end{pmatrix}$ [/mm] mit $t [mm] \in \mathbb{R}$ [/mm] ein Eigenvektor ist - ein solcher wäre zb $ [mm] \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ [/mm]

Macht man gleiches für den anderen Eigenwert so erhält man

$-x-y = 0$
$-3x-3y=0$

also $x=-y$ somit sind alle Vektoren $ [mm] \begin{pmatrix} t \\ -t \end{pmatrix}$ [/mm] mit $t [mm] \in \mathbb{R}$ [/mm] ein Eigenvektor so zb der Vektor
$ [mm] \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ [/mm]

Ich würde hier sagen, dass a) und b) beantwortet ist, denn zum einen ist argumentiert, dass A diagonalisierbar ist, weil es eine entsprechende Darstellung [mm] $BDB^{-1}$ [/mm] mit einer Diagonalmatrix D gibt und zum anderen ist D und B auch berechnet und damit b) erledigt.

zu c)

Wenn A diagonalisierbar ist, dann gilt [mm] $A^k [/mm] = [mm] BD^{k}B^{-1}$ [/mm]

ergo ist

[mm] $A^{1002} [/mm] =  [mm] \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} (-2)^{1002} & 0 \\ 0 & 2^{1002} \end{pmatrix}\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}^{-1}$ [/mm] =  [mm] \begin{pmatrix} 2^{1001} & 0 \\ 0 & 2^{1001} \end{pmatrix}. [/mm]

Ist das korrekt was ich gemacht habe?

Vielen Dank vorab und LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Matrix diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 07:46 Do 11.05.2023
Autor: chrisno

Hallo,

ich konnte nur wenig Zeit investieren und bin lange aus dem Thema raus. Ein paar Anmerkungen:
a) Argumentiere ....   Das ist nicht die in der Mathematik übliche Formulierung (Zeige, Beweise, ...). Entsprechend würde ich auch als Antwort einen Text erwarten.

b) Indem Du die Matritzen B und D angibst hast Du die Diagonalisierbatrkeit gezeigt. Ich erhalte aber $ [mm] A^T [/mm] = [mm] BDB^{-1} [/mm] $.
Habe ich mich verrechnet?

c) Ich komme auf ein lecht anderes Ergebnis. Auch hier schließe ich einen Rechenfehler meinerseits nicht aus.

Bezug
        
Bezug
Matrix diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 11.05.2023
Autor: Gonozal_IX

Hiho,

> Somit wäre die Diagonalmatrix [mm]D = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}[/mm]

Was ist denn mit [mm]D = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}[/mm]?

> Wenn A diagonalisierbar ist, dann gilt [mm]A^k = BD^{k}B^{-1}[/mm]
>
> ergo ist
>
> [mm]A^{1002} = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} (-2)^{1002} & 0 \\ 0 & 2^{1002} \end{pmatrix}\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}^{-1}[/mm]
> =  [mm]\begin{pmatrix} 2^{1001} & 0 \\ 0 & 2^{1001} \end{pmatrix}.[/mm]

du hast Spalten mit Zeilen verwechselt.
Du schriebst selbst:

> Die Matrix $ B $ besteht aus den zugehörigen Eigenvektoren - also die Spalten von B sind die EV von A.

Du hast die EV aber als Zeilen notiert, nicht als Spalten.
Demzufolge stimmt deine Rechnung nicht.

Das wäre dir übrigens aufgefallen, wenn du die Diagonalmatrix mal mit dem von dir gewählten B versucht hättest, wirklich mal auszurechnen.

Gruß,
Gono

Bezug
                
Bezug
Matrix diagonalisierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Do 11.05.2023
Autor: Markus_Konrad_1

Hallo Gono!

ich hatte mich vertippt

$ B = [mm] \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} [/mm] $

Somit ist

$  [mm] \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix}-2& 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/4 & 1/4 \\ 3/4 & -1/4 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & -3 \\ -1& -1 \end{pmatrix}$ [/mm]

Ich glaube wie ich die Eigenwerte in D anordne ist egal, sofern ich die Eigenvektoren ebenfalls entsprechend anordne? also wenn ich

$D = [mm] \begin{pmatrix} 2& 0 \\ 0 & -2 \end{pmatrix} [/mm]  $ nehme, dann wäre $B = [mm] \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$? [/mm]

wenn ich reche

[mm] $\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$ \begin{pmatrix} (-2)^{1002} & 0 \\ 0 & 2^{1002} \end{pmatrix} \begin{pmatrix} 1/4 & 1/4 \\ 3/4 & -1/4 \end{pmatrix} [/mm] =  [mm] \begin{pmatrix} 2^{1002}& 0 \\ 0 & 2^{1002} \end{pmatrix}$ [/mm]

Passt das so?

Zu a) wegen Chrisnos Antwort: A hat zwei voneinander verschiedene Eigenwerte, entsprechend existieren zwei linear unabhängige Eigenvektoren, also ist A diagonalisierbar.








Bezug
                        
Bezug
Matrix diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Do 11.05.2023
Autor: Gonozal_IX

Hiho,
> [mm]B = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}[/mm]

[ok]

> Ich glaube wie ich die Eigenwerte in D anordne ist egal,
> sofern ich die Eigenvektoren ebenfalls entsprechend
> anordne?

Du verdrehst hier Ursache und Wirkung… du "ordnest" ja die Eigenwerte nicht an, und erstellst dann die zugehörige Transformationsmatrix, sondern umgekehrt.
Du bestimmst die Transformationsmatrix und berechnest dann die zugehörige Diagonalgestalt.
Dabei passiert es "zufällig", dass der n-te Diagonaleintrag gerade der Eigenwert des in der n-ten Spalte stehenden Eigenvektors ist.

Und natürlich ist das nicht wirklich Zufall, aber es sollte einem klar sein, in welcher Reihenfolge man hier eigentlich arbeitet.
Wenn man das verinnerlicht hat (was bei dir anscheinend noch nicht so 100% gegeben ist), kann man den Weg natürlich abkürzen, indem man direkt nach der Berechnung erst eine Diagonalmatrix und dann die zugehörige Basistransformationsmatrix aufschreibt.

Auf meinen ersten Hinweis bist du übrigen nicht wirklich eingegangen: Du schriebst die Diagonalmatrix. Es gibt nicht die, sondern unter Umständen eben n! viele bei einer $n [mm] \times [/mm] n$ - Matrix.
D.h. das einzige was du angegeben hast, ist EINE Diagonalmatrix.

> Zu a) wegen Chrisnos Antwort: A hat zwei voneinander
> verschiedene Eigenwerte, entsprechend existieren zwei
> linear unabhängige Eigenvektoren, also ist A als $2 [mm] \times [/mm] 2$ Matrix
> diagonalisierbar.

Ansonsten passt das.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]