www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix bestimmen, Fibonacci
Matrix bestimmen, Fibonacci < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix bestimmen, Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mo 07.11.2011
Autor: EvelynSnowley2311

Aufgabe
Für n    [mm] \in \IN [/mm] sind die Fibonacci Zahlen gegeben durch:

[mm] f(n)=\begin{cases} n, & \mbox{für } n \le 1 \\ f_{n-2} + f_{n-1}, & n \ge 2 \end{cases} [/mm]

Bestimmen Sie eine Matrix F, sodass

[mm] F^{n-1} \vektor{ f_{0}\\ f_{1}} [/mm]   = [mm] \vektor{f_{n-1}\\ f_{n}} [/mm]

huhu;)

bevor ich hier anfange erstmal 2 Verständnisfragen zu Aufgabenstellung:

1.es ist richtig davon auszugehen dass die matrix links multipliziert wird mit vektor [mm] \vektor{ f_{0}\\ f_{1}} [/mm]   da dazwischen ja sonst nix steht

2. ist die erste zeile des vektors auf der rechten seite überhaupt möglich ungleich 0 zu sein wenn man links in der ersten zeile mit f0 = 0 mit 0 multipliziert?

        
Bezug
Matrix bestimmen, Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mo 07.11.2011
Autor: EvelynSnowley2311


huhu nochma ich hab grad diese allgemeine formel entdeckt:



[mm] \pmat{ 0 & 1 \\ 1 & 1 }^{n} \vektor{f0 \\ f1} [/mm]  = [mm] \vektor{ f_{n}\\ f_{n+1}} [/mm]

wäre eiiiigentlich ja analog zu meiner aufgabe und damit verbunden ja schon die lösung:

[mm] \pmat{ 0 & 1 \\ 1 & 1 }^{n-1} \vektor{f0 \\ f1} [/mm] = [mm] \vektor{ f_{n-1}\\ f_{n}} [/mm]

muss ich also gar nichts beweisen oder so? wäre irgendwie zu einfach oder?

Bezug
                
Bezug
Matrix bestimmen, Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 07.11.2011
Autor: wieschoo

m.E. reicht es da die Matrix anzugeben. Du solltest dir nur klar sein, warum eben die Matrix so aussieht.

Bezug
        
Bezug
Matrix bestimmen, Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mo 07.11.2011
Autor: wieschoo

wie du ja schon entdeckt hast brauchst du nur die Matrix aufschreiben.
[mm]f_n=f_{n-1}+f_{n-2}[/mm]

dröselt man das auf kommt man eben auf
[mm]\vektor{f_1\\ f_2}=\pmat{0&1\\ 1&1}\vektor{f_0\\ f_1}[/mm]
[mm]\vektor{f_2\\ f_3}=\pmat{0&1\\ 1&1}\vektor{f_1\\ f_2}=\pmat{0&1\\ 1&1}\pmat{0&1\\ 1&1}\vektor{f_0\\ f_1}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]