www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Matrix aus Kern und Bild
Matrix aus Kern und Bild < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix aus Kern und Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 29.06.2010
Autor: qsxqsx

Hallo,

Ich habe mich gefragt, ob man aus gegebenem Bild und Kern einer Matrix (bei gegebener grösse des Untervektorraums der Matrix) die Matrix selbst eindeutig bestimmen kann?

Beispiel:

Bild A = Span [mm] \{ \vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 1} \} [/mm]

Kern A =  [mm] \{ \vektor{ 0 \\ -s \\ s} \} [/mm] , s ist ein Parameter


Das Bild der Matrix, kann man doch einfach in die Spalten der gesuchten Matrix schreiben. Aber die Matrix soll ja drei Spalten haben und ich habe zwei Bilder. Ich bin mir nun nicht sicher, ob es egal ist, in welche Spalten der gesuchten Matrix man die Bilder schreibt?


A = [mm] \pmat{ 1 & 0 & a \\ 0 & 1 & b \\ 0 & 1 & c} [/mm]

Und jetzt ein Gleichungssystem mit A*Kernvektor = Nullvektor

Aber dann ist es ja noch nicht eindeutig bestimmt? Geht es also nur wenn die Matrix vollen Rang bzw. keinen Kern und nur Bilder hat, weil sie dann injektiv ist? Ist das richtig? Und wenn ja, wie weiss ich welche Bildvektoren in welche Spalte der Matrix müssen?

Danke.

Gruss

        
Bezug
Matrix aus Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Di 29.06.2010
Autor: wieschoo

Hi,

wenn ich
[mm] \pmat{ 1 & 0&0 \\ 0 & 1&2\\ 0 & 1&2 } [/mm] und [mm] \pmat{ 1 & 0&0 \\ 0 & 1&1\\ 0 & 1&1 } [/mm]
betrachte erhalte ich die gleichen Kerne und Bildbasen. Allerdings spannen die Basen einen Untervektorraum auf,der ja nun mehrere Vektoren enthält. Somit kann man i.a. keine eindeutige Matrix am Ende erhalten.

Außerdem ist es gefährlich, wenn man nicht angibt bzgl. welcher Basis die Matrix gemeint ist.
[mm] \pmat{ 1 & 0&0 \\ 0 & 1&2\\ 0 & 1&2 } [/mm] ist die gleiche lineare Abbildung wie
[mm] \pmat{ 0 & 1&0 \\ 1 & 0&2\\ 1 & 0&2 }, [/mm] wenn man die Basis richtig wählt.


Bezug
                
Bezug
Matrix aus Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Di 29.06.2010
Autor: qsxqsx

Hallo,

Danke! Vorallem mit dem Tipp, das man eine Basis dazu angeben muss, jetzt ist es mir klar.

Das ist eigentlich was ich wissen wollte, die Frage kann grün gesetzt werden...

Gruss

Bezug
        
Bezug
Matrix aus Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Di 29.06.2010
Autor: ChopSuey

Moin,

wenn $ [mm] \operatorname{ im}\varphi [/mm] = [mm] \operatorname{span} \left( \vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 1} \right) [/mm] $, wie kann die Matrix dann aus drei Spalten bestehen?

Geht das denn?

Grüße
ChopSuey


Bezug
                
Bezug
Matrix aus Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Di 29.06.2010
Autor: fred97


> Moin,
>  
> wenn [mm]\operatorname{ im}\varphi = \operatorname{span} \left( \vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 1} \right) [/mm],
> wie kann die Matrix dann aus drei Spalten bestehen?
>  
> Geht das denn?

Klar:  $A:=  [mm] \pmat{ 1 & 0&0 \\ 0 & 1&0\\ 0 & 1&0 } [/mm] $ und $ [mm] \varphi(x):=Ax$ [/mm]

FRED

>  
> Grüße
>  ChopSuey
>  


Bezug
                        
Bezug
Matrix aus Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Di 29.06.2010
Autor: ChopSuey

Hallo Fred,

> > Moin,
>  >  
> > wenn [mm]\operatorname{ im}\varphi = \operatorname{span} \left( \vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 1} \right) [/mm],
> > wie kann die Matrix dann aus drei Spalten bestehen?
>  >  
> > Geht das denn?
>  
> Klar:  [mm]A:= \pmat{ 1 & 0&0 \\ 0 & 1&0\\ 0 & 1&0 }[/mm] und
> [mm]\varphi(x):=Ax[/mm]
>  
> FRED

Tatsache. Danke !

Grüße
ChopSuey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]