www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix/Vektorbeweise
Matrix/Vektorbeweise < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix/Vektorbeweise: Frage(n)/Tipp(s)
Status: (Frage) überfällig Status 
Datum: 02:54 So 14.12.2008
Autor: Rubstudent88

Aufgabe
Seien [mm] v_{1},...v_{n} [/mm] eine Basis für einen K-Vektorraum V und es sei [mm] A=(a_{ij})_{1 \le i \le m,1 \le j \le n} \varepsilon [/mm] M (m x n, K). Wir betrachten für 1 [mm] \le [/mm] i [mm] \le [/mm] m  die Vektoren:

[mm] w_{i}:=\summe_{j=1}^{n}a_{ij}v{j} [/mm]

a) Zeigen Sie, dass gilt: dim [mm] (span(w_{1},...w_{m}))= [/mm] Rang(A)
b) Geben Sie ein Verfahren zur Bestimmung einer Basis von [mm] span(w_{1},...w_{m}) [/mm] an.

Guten Abend liebes matheforum.net Forum,

ich hänge bei meinem Übungsblatt an zwei Aufgaben fest (diese und eine weitere die ich hier im Forum gepostet habe) und brauche eure Hilfe. Unser Übungsgruppenleiter hat uns schonmal vorgewarnt, dass diese beiden Aufgaben es in sich haben :).
Und ich häng irgendwie total auf dem Schlauch, was vielleicht auch an der Uhrzeit liegen könnte.

Zu Aufgabe a:

dim [mm] (span(w_{1},...w_{m})), [/mm] d.h. es gibt eine Basis für [mm] span(w_{1},...w_{m}). [/mm]
span [mm] (w_{1},...w_{m}), [/mm] es gibt also ein Unterraum mit [mm] \lambda_{1},...\lambda_{n} \varepsilon [/mm] K und [mm] w_{1},...w_{m} \varepsilon [/mm] K). Und weiter? Ist dies ein richtiger Ansatz oder muss man hier anders vorgehen.
Und wie kommt ich dann zum Rang, der mir ja die Anzahl der Nichtnullzeilen angibt. Oder ist es einfacher anderherum vorzugehen?

Zu b) Muss ich einfach das Verfahren nennen oder auch durchführen? Eine Basis besteht ja aus linear unabhängigen Vektoren und es muss ein Erzeugendensystem geben. Bei einer Matrix hätte ich jetzt gesagt, einfach die Matrix in ZSF bringen. Aber hier habe ich keine Schimmer, obwohl span mir doch hier was entscheidenes sagen sollte, oder?

Deswegen würde ich gerne wissen, ob ihr mir helfen könnt und mir entscheidene Tipps zum weiteren Vorgehen geben könntet. Welche Vorüberlegungen habe ich vergessen, was wäre ein möglicher Ansatz?
Wäre um jede Hilfe dankbar.

Gute Nacht wünscht euch ein neues Mitglied hier im Forum :).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrix/Vektorbeweise: Ergänzung: Definition Rang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 So 14.12.2008
Autor: Rubstudent88

Unsere genaue Definition für Rang lautet:

Sei A [mm] \varepsilon [/mm] M (m x n, K). Dann heißen dim(ZR(A)) bzw. dim(SR(A)) der Zeilenrang bzw. Spaltenrang von A.

ZR(A):=span [mm] (z_{1},...,z_{m}) [/mm]
SR(A):=span [mm] (s_{1},...,s_{n}) [/mm]

Also zu a) wär es bei einer allgemeinen Matrix einfach Definitionen einsetzen, aber habe ich es mit Vektoren zu tun. Deswegen bin ich nicht wirklich weiter als heute morgen. Wäre schön, wenn mir hier jemand ein paar Hilfestellungen geben könnte

Bezug
                
Bezug
Matrix/Vektorbeweise: 2.Ergänzung zu Definition Rang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 14.12.2008
Autor: Rubstudent88

Für A $ [mm] \varepsilon [/mm] $ M (m x n, K) definieren wir den Rang durch

Rang (A):= Spaltenrang(A)(= Zeilenrang(A)).

Bei beiden Teilaufgaben bin ich immernoch nicht wirklich weiter.

Kann ich irgendwie zeigen, dass dim [mm] (span(w_{1},...w_{m})) [/mm] dem Zeilen-oder Spaltenrang entspricht? Wenn ja wie? Oder muss ich hier doch wie anfangs mit Basen und Unterräumen argumentieren?

Bezug
        
Bezug
Matrix/Vektorbeweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 17.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]