www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix
Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mo 29.12.2008
Autor: Foster

Aufgabe
Die Rentiere des Weihnachtsmannes sind moderner Rationaliesierung zum Opfer gefallen. Der Mann mit dem weißen Bart hat jetzt einen Schlitten mit Raketen-Antrieb. Ihm stehen zwei Steuerhebel zur Verfügung, durch die er die Größen a [mm] \in \IR [/mm] und c [mm] \in \IR^{+} [/mm] in der Gleichung

[mm] x_{1}² [/mm] + [mm] 8x_{2}² [/mm] + [mm] x_{3}² [/mm] - 4 [mm] x_{1}x_{2} [/mm] + [mm] 2ax_{2}x_{3} [/mm] = c

der Flugfläche steuern kann. Durch diese Gleichung ist eine quadratische Form mit symmetrischer Matrix A gegeben. Da eine ellipsoidale Umlaufbahen gewünscht wird, wüsste der Weihnachtsmann gerne von Ihnen, welche Einstellungen von a eine positiv definite Matrix A liefert.


hoffe ihr könnt mir einen Tipp geben, wie ich der Ansatz der Aufgabe ist. Habe leider keine Ahnung.

        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 29.12.2008
Autor: MathePower

Hallo Foster

> Die Rentiere des Weihnachtsmannes sind moderner
> Rationaliesierung zum Opfer gefallen. Der Mann mit dem
> weißen Bart hat jetzt einen Schlitten mit Raketen-Antrieb.
> Ihm stehen zwei Steuerhebel zur Verfügung, durch die er die
> Größen a [mm]\in \IR[/mm] und c [mm]\in \IR^{+}[/mm] in der Gleichung
>  
> [mm]x_{1}²[/mm] + [mm]8x_{2}²[/mm] + [mm]x_{3}²[/mm] - 4 [mm]x_{1}x_{2}[/mm] + [mm]2ax_{2}x_{3}[/mm] =
> c
>  
> der Flugfläche steuern kann. Durch diese Gleichung ist eine
> quadratische Form mit symmetrischer Matrix A gegeben. Da
> eine ellipsoidale Umlaufbahen gewünscht wird, wüsste der
> Weihnachtsmann gerne von Ihnen, welche Einstellungen von a
> eine positiv definite Matrix A liefert.
>  
>
> hoffe ihr könnt mir einen Tipp geben, wie ich der Ansatz
> der Aufgabe ist. Habe leider keine Ahnung.  


Eine Matrix ist positiv definit, wenn alle ihre []Eigenwerte größer als Null sind.

Außerdem ist zu beachten, daß es mindestens 2 verschiedene Eigenwerte gibt.


Gruß
MathePower

Bezug
                
Bezug
Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 30.12.2008
Autor: Foster

Das habe ich verstanden, aber
wie kann ich das denn nachweisen?

Bezug
                        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 30.12.2008
Autor: MathePower

Hallo Foster,

> Das habe ich verstanden, aber
>  wie kann ich das denn nachweisen?


In dem Du die Eigenwerte der zugehörigen Matrix

[mm]\pmat{1 & -2 & 0 \\ -2 & 8 & a \\ 0 & a & 1}[/mm]

berechnest.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]