www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix-Umformungen
Matrix-Umformungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix-Umformungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:58 Mo 11.02.2008
Autor: antoni1

Aufgabe
0 = [mm] v^{T} (\bruch{1}{2} X^{T} X)^{-1} [/mm] (2 [mm] X^{T} [/mm] y - [mm] \lambda [/mm] v)

das ganze nach [mm] \lambda [/mm] auflösen, wobei
X : Matrix
v : Vektor
y : Vektor
[mm] \lambda [/mm] : Lagrange-Multiplikator

Hi!

Nach mehreren Rechenschritten bin ich nun an oben genannten Punkt gekommen. Hier weiß ich nicht mehr weiter, es soll hier jetzt nach [mm] \lambda [/mm] aufgelöst werden. Wahrscheinlich scheitere ich auch daran, dass ich schon seit Ewigkeiten keine Matrizen mehr angefasst habe.

Danke für jede Hilfe
Anton

        
Bezug
Matrix-Umformungen: ursprüngliche Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Mo 11.02.2008
Autor: Loddar

Hallo antoni!


Ich denke mal, dass es auch sehr hilfreich wäre, wenn Du uns auch die ursprüngliche Aufgabenstellung verraten und hier posten würdest.


Gruß
Loddar


Bezug
                
Bezug
Matrix-Umformungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 11.02.2008
Autor: antoni1

Die ursprüngliche Aufgabenstellung ist:

-2(y - [mm] Xb)^{T}X [/mm] + [mm] \lambda v^{T}=0 [/mm] nach [mm] \lambda [/mm] aufzulösen, wobei [mm] v^{T} [/mm] b = 0.

Nach transponieren der obigen Gleichung erhält man
[mm] -2X^{T} [/mm] (y - X b) + [mm] \lambda [/mm] v = 0

[mm] -2X^{T}y [/mm] + [mm] 2X^{T}X [/mm] b + [mm] \lambda [/mm] v = 0

[mm] 2X^{T}X [/mm] b = [mm] 2X^{T}y [/mm] - [mm] \lambda [/mm] v

falls [mm] X^{T}X [/mm] invertierbar, dann
b [mm] =\bruch{1}{2}(X^{T}X)^{-1} (2X^{T}y [/mm] - [mm] \lambda [/mm] v)
und da  [mm] v^{T} [/mm] b = 0 erhält man
0 = [mm] v^{T} [/mm] b = [mm] v^{T} \bruch{1}{2}( X^{T} X)^{-1} [/mm] (2 [mm] X^{T} [/mm] y - [mm] \lambda [/mm] v)


Bezug
        
Bezug
Matrix-Umformungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mi 13.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]