www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Maße eines Kreiszylinders
Maße eines Kreiszylinders < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maße eines Kreiszylinders: Hilfe zur Berechnung
Status: (Frage) beantwortet Status 
Datum: 18:59 Di 24.06.2008
Autor: Bobby_1983

Aufgabe
Bestimmen Sie die Maße (Durchmesser und Höhe) des Kreiszylinders, der bei einem Volumen von [mm] 1000cm^3 [/mm] die kleinste Gesamtoberfläche besitzt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, vorab muss ich fragen ob die Aufgabe in der richtigen Kategorie steht?! Leider habe ich keinen blassen schimmer, wie ich da voran gehen muß und wie ich zu einer erfolgreichen Lösung komme! Würde mich freuen wenn mir jemand helfen könnte! Gruß Bobby

        
Bezug
Maße eines Kreiszylinders: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Di 24.06.2008
Autor: Somebody


> Bestimmen Sie die Maße (Durchmesser und Höhe) des
> Kreiszylinders, der bei einem Volumen von [mm]1000cm^3[/mm] die
> kleinste Gesamtoberfläche besitzt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo, vorab muss ich fragen ob die Aufgabe in der
> richtigen Kategorie steht?!

Eher nicht "Hochschule": es handelt sich um eine recht einfache Extremwertaufgabe.

>Leider habe ich keinen blassen

> schimmer, wie ich da voran gehen muß und wie ich zu einer
> erfolgreichen Lösung komme! Würde mich freuen wenn mir
> jemand helfen könnte!

Ist $r$ der Radius und $h$ die Höhe des gesuchten Zylinders, so muss wegen der Volumenbedingung (sog. "Nebenbedingung") gelten [mm] $\pi r^2 [/mm] h=1000$ (cm$^3$). Es soll die Zielfunktion [mm] $O(r,h)=2\pi r^2+2\pi [/mm] r h$ (=Oberfläche eines Kreiszylinders mit den Abmessungen $r, h$) minimal gemacht werden.
Auflösen der Nebenbedingung nach $h$ und Einsetzen in $O(r,h)$ ergibt $O(r)$ d.h. die Oberfläche als Funktion des Radius $r$ alleine. Dann verwendest Du Differentialrechnung, um die Minimalstelle dieser Funktion $O(r)$ zu bestimmen. Ist $r$ bestimmt, setzt Du diesen Wert von $r$ in die nach $h$ aufgelöste Nebenbedingung ein: ergibt den zugehörigen Wert von $h$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]