www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Maße
Maße < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maße: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:53 So 07.05.2006
Autor: SoB.DarkAngel

Aufgabe
Sei [mm] (X,\mathcal{A},\mu) [/mm] ein Maßraum und [mm] A_{1},A_{2},... [/mm] eine Folge messbarer Teilmengen von X mit
[mm] \summe_{n=1}^{\infty}\mu(A_{n})<\infty. [/mm]
Zeigen Sie
[mm] \mu(limsupA_{n})=0. [/mm]

Hallo!

Ich habe erstmal damit angefangen, die Definition des limsup einzusetzen:
[mm] \mu(limsupA_{n})=\mu(\bigcap_{n\in\IN}^{}\bigcup_{m \ge n}^{}A_{m}) [/mm]

Jetzt habe ich mir gedacht, dass man den Term mit den Rechenregeln für Maße irgendwie umformen kann, so dass man dann auf 0 kommt. Komme aber dabei leider nicht weiter. Vielleicht kann mir ja hier jemand helfen.

Viele Grüße,

SoB.DarkAngel

        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 07.05.2006
Autor: felixf

Hallo!

> Sei [mm](X,\mathcal{A},\mu)[/mm] ein Maßraum und [mm]A_{1},A_{2},...[/mm]
> eine Folge messbarer Teilmengen von X mit
>  [mm]\summe_{n=1}^{\infty}\mu(A_{n})<\infty.[/mm]
>  Zeigen Sie
>  [mm]\mu(limsupA_{n})=0.[/mm]
>  Hallo!
>  
> Ich habe erstmal damit angefangen, die Definition des
> limsup einzusetzen:
>  [mm]\mu(limsupA_{n})=\mu(\bigcap_{n\in\IN}^{}\bigcup_{m \ge n}^{}A_{m})[/mm]

Benuzte: Fuer jedes [mm] $n_0 \in \IN$ [/mm] ist [mm] $\mu(\bigcap_{n\in\IN}^{}\bigcup_{m \ge n}^{}A_{m}) \le \mu(\bigcup_{m \ge n_0}^{}A_{m})$, [/mm] und [mm] $\mu(\bigcup_{m \ge n_0}^{}A_{m}) \le \sum_{n \ge n_0} \mu(A_m)$. [/mm]

Jetzt schau dir mal an, was es heisst, dass [mm] $\sum_{n=1}^\infty x_n [/mm] < [mm] \infty$ [/mm] ist fuer eine Folge von nicht-negativen reellen Zahlen [mm] $x_n$. [/mm] Insbesondere was es fuer [mm] $\sum_{n=k}^\infty x_n$ [/mm] bedeutet fuer $k [mm] \to \infty$. [/mm]

LG Felix


Bezug
                
Bezug
Maße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 So 07.05.2006
Autor: SoB.DarkAngel

Ist [mm] \summe_{m \ge n_{0} }^{}\mu(A_{m}) [/mm] dann schon =0 wegen [mm] \summe_{n=1}^{\infty}\mu(A_{n})<\infty [/mm] (ich verstehe nicht so ganz, was das bedeutet) ? Und weil das Maß nur Werte annimmt, die [mm] \ge [/mm] 0 sind, kann nur Gleichheit gelten.

Bezug
                        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 07.05.2006
Autor: felixf

Hallo!

> Ist [mm]\summe_{m \ge n_{0} }^{}\mu(A_{m})[/mm] dann schon =0 wegen
> [mm]\summe_{n=1}^{\infty}\mu(A_{n})<\infty[/mm] (ich verstehe nicht
> so ganz, was das bedeutet) ?

Nein. Es kann sein dass das immer echt groesser als Null ist. Aber es wird beliebig klein. (Benutze folgendes: Eine reelle Zahl $x [mm] \ge [/mm] 0$ mit der Eigenschaft, dass $x < [mm] \varepsilon$ [/mm] ist fuer jedes [mm] $\varepsilon [/mm] > 0$, ist bereits gleich Null.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]