www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maß und Integral berechnen
Maß und Integral berechnen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß und Integral berechnen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:32 Mo 30.07.2007
Autor: barbara1221

Aufgabe
Die Funktion h: R [mm] \to [/mm] R sei durch
      h(x) := [mm] x^{2}\* \I1_{[0,1]}(x), x\in [/mm] R,
definiert. Mit dem Lebesguemaß [mm] \lambda_{1} [/mm] erzeugt man das Maß [mm] \mu [/mm] auf (R,B(R)) durch [mm] \mu [/mm] := [mm] \lambda_{1} \circ h^{-1}. [/mm]
Berechen Sie
   (a)    [mm] \mu([0.5,1]), \mu(\{0.25\}) [/mm]   und   [mm] \mu([0,1]) [/mm]
sowie
   (b)    [mm] \integral_{0}^{1}{f(x) d \mu (x)} [/mm]   mit   f(x):= [mm] x^{1/3}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Hallo,

ich möchte gerne wissen meine Lösung zu der Aufgabe korrekt ist. Bin mir nämlich micht ganz so sicher.

zu (a)
Da [mm] \mu((a,b]) [/mm] = F(b)-F(a) ist und [mm] F(x)=\wurzel{x} [/mm] in diesem Fall ist bekomme ich als Lösung
[mm] \mu([0.5,1]) [/mm] = 1 - [mm] \wurzel{0.5} [/mm]
[mm] \mu(\{0.25\}) [/mm] = 0
[mm] \mu([0,1]) [/mm] = 1 - 0 = 1

zu (b)
Hier verwende ich den Übertragungssatz
[mm] \integral_{0}^{1}{f(x) d \mu (x)} [/mm] = [mm] \integral_{0}^{1}{f(x) d (\lambda_{1}\circ h^{-1})(x)} [/mm] = [mm] \integral_{0}^{1}{f(h(x)) d \lambda_{1} (x)} [/mm] =  
[mm] \integral_{0}^{1}{f(x^{2}) d \lambda_{1} (x)} [/mm] = [mm] \integral_{0}^{1}{x^{2/3}dx} [/mm] = 3/5



Dankeschön





        
Bezug
Maß und Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 30.07.2007
Autor: Hund

Wenn ich mich nicht täusche, ist es richtig.

Bezug
        
Bezug
Maß und Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 30.07.2007
Autor: Hund

Hallo,

ich glaube, es ist richtig.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]