www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maß des Schnitts muss 0 sein
Maß des Schnitts muss 0 sein < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß des Schnitts muss 0 sein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 So 25.10.2020
Autor: Jellal

Guten Abend!

Ich soll folgendes zeigen: Sei [mm] (X,\Sigma,\mu) [/mm] ein Maßraum und [mm] E_{n}\in \Sigma [/mm] eine Folge von Mengen mit [mm] \summe_{n=1}^{\infty}\mu(E_{n})<\infty. [/mm]

Ich soll zeigen, dass dann [mm] \mu(\bigcap_{n=1}^{\infty}E_{n})=0. [/mm]
Dabei wird auf die Linearität des Lebesgue-Integrals für nicht-negative messbare Funktionen verwiesen, und auf die Tatsache, dass mit solchen Funktionen über
[mm] \nu(E)=\integral_{E}^{}{f(x) d\mu(x)} [/mm] neue Maße definiert werden.

Ich glaube aber, diesen Hinweis nicht zu brauchen.
Wenn [mm] \summe_{n=1}^{\infty}\mu(E_{n})<\infty, [/mm] dann muss [mm] \mu(E_{n}) [/mm] eine Nullfolge sein (die Maße sind nichtnegativ und die Reihe muss daher konvergieren). Dann folgt doch
[mm] \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \mu(E_{n}) [/mm] für alle n wegen Monotonie, und daher auch 0 [mm] \le \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \limes_{n\rightarrow\infty} \mu(E_{n}) [/mm] = 0.

Stimmt was nicht? Wie würde der Hinweis helfen?

vG.
Jellal

        
Bezug
Maß des Schnitts muss 0 sein: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mo 26.10.2020
Autor: fred97


> Guten Abend!
>  
> Ich soll folgendes zeigen: Sei [mm](X,\Sigma,\mu)[/mm] ein Maßraum
> und [mm]E_{n}\in \Sigma[/mm] eine Folge von Mengen mit
> [mm]\summe_{n=1}^{\infty}\mu(E_{n})<\infty.[/mm]
>  
> Ich soll zeigen, dass dann
> [mm]\mu(\bigcap_{n=1}^{\infty}E_{n})=0.[/mm]
>  Dabei wird auf die Linearität des Lebesgue-Integrals für
> nicht-negative messbare Funktionen verwiesen, und auf die
> Tatsache, dass mit solchen Funktionen über
> [mm]\nu(E)=\integral_{E}^{}{f(x) d\mu(x)}[/mm] neue Maße definiert
> werden.
>  
> Ich glaube aber, diesen Hinweis nicht zu brauchen.
>  Wenn [mm]\summe_{n=1}^{\infty}\mu(E_{n})<\infty,[/mm] dann muss
> [mm]\mu(E_{n})[/mm] eine Nullfolge sein (die Maße sind nichtnegativ
> und die Reihe muss daher konvergieren). Dann folgt doch
>  [mm]\mu(\bigcap_{n=1}^{\infty}E_{n}) \le \mu(E_{n})[/mm] für alle
> n wegen Monotonie, und daher auch 0 [mm]\le \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \limes_{n\rightarrow\infty} \mu(E_{n})[/mm]
> = 0.
>  
> Stimmt was nicht?

Deine Argumentation ist richtig.

> Wie würde der Hinweis helfen?
>  
> vG.
>  Jellal


Bezug
                
Bezug
Maß des Schnitts muss 0 sein: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 So 01.11.2020
Autor: Jellal

Vielen Dank, Fred!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]