www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Martingal
Martingal < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingal: Problem
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 02.01.2009
Autor: SorcererBln

Aufgabe
Zeige, dass ein nicht-negatives Martingal fast sicher $0$ bleibt, nachdem es zum ersten Mal die $0$ getroffen hat!

Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja jemand einen Tipp?

        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Fr 02.01.2009
Autor: felixf

Hallo

> Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss
> ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> jemand einen Tipp?

Wenn du eine Zufallsvariable $X$ hast mit $X [mm] \ge [/mm] 0$ f.s., und du $E(X) = 0$ hast, dann gilt $X = 0$ f.s.

Du weisst also [mm] $X_t [/mm] = 0$ f.s. und hast $s > t$, und willst [mm] $X_s [/mm] = 0$ f.s. zeigen; da [mm] $X_s \ge [/mm] 0$ gilt reicht es also aus, [mm] $E(X_s) [/mm] = 0$ zu zeigen.

Wie kannst du jetzt die Martingaleigenschaft vielleicht verwenden? Bedenke, dass $E(E(X [mm] \mid \mathcal{F})) [/mm] = E(X)$ ist fuer alle [mm] $\sigma$-Algebren $\mathcal{F}$ [/mm] und alle Zufallsvariablen $X$.

LG Felix


Bezug
                
Bezug
Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Fr 02.01.2009
Autor: SorcererBln


> Hallo
>  
> > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  Ich weiß hier noch keine Lösungsstrategie. Sicherlich
> muss
> > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > jemand einen Tipp?
>
> Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  
> Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> zu zeigen.
>  
> Wie kannst du jetzt die Martingaleigenschaft vielleicht
> verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> Zufallsvariablen [mm]X[/mm].
>  
> LG Felix
>  

OK. Sei $n$ der erste Zeitpunkt, wo [mm] $X_n=0$ [/mm] f.s.

OK. Ich habe ja aufgrund der Martingaleigenschaft für alle [mm] $m\geq [/mm] n$

[mm] $E[X_m]=E[X_n]=0$ [/mm]           (*)

und daraus folgt also [mm] $X_m=0$ [/mm] für alle [mm] $m\geq [/mm] n$. Fertig.

Zu (*) beweis per Induktion nach m. Für $m=n$ ist die Behauptung klar. Für $m+1$ haben wir aufgrund der Martingaleigenschaft

[mm] $E[X_{m+1}|F_{m}]=X_m$, [/mm] also [mm] $E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n]$ [/mm]

nach Induktionsvoraussetzung. Also mit der Eigenschaft der bedingten Erwartung

[mm] $E[X_{m+1}]=E[X_n]$, [/mm]

was wir zeigen wollten. Bist du damit einverstanden?

Vielen Dank für deinen Tipp!






Bezug
                        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Sa 03.01.2009
Autor: felixf

Hallo

> > > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  >  Ich weiß hier noch keine Lösungsstrategie.
> Sicherlich
> > muss
> > > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > > jemand einen Tipp?
> >
> > Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> > du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  >  
> > Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> > f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> > zu zeigen.
>  >  
> > Wie kannst du jetzt die Martingaleigenschaft vielleicht
> > verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> > ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> > Zufallsvariablen [mm]X[/mm].
>  >  
> > LG Felix
>  >  
>
> OK. Sei [mm]n[/mm] der erste Zeitpunkt, wo [mm]X_n=0[/mm] f.s.
>  
> OK. Ich habe ja aufgrund der Martingaleigenschaft für alle
> [mm]m\geq n[/mm]
>  
> [mm]E[X_m]=E[X_n]=0[/mm]           (*)
>  
> und daraus folgt also [mm]X_m=0[/mm] für alle [mm]m\geq n[/mm]. Fertig.
>  
> Zu (*) beweis per Induktion nach m. Für [mm]m=n[/mm] ist die
> Behauptung klar. Für [mm]m+1[/mm] haben wir aufgrund der
> Martingaleigenschaft
>  
> [mm]E[X_{m+1}|F_{m}]=X_m[/mm], also
> [mm]E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n][/mm]
> nach Induktionsvoraussetzung. Also mit der Eigenschaft der
> bedingten Erwartung
>  
> [mm]E[X_{m+1}]=E[X_n][/mm],
>  
> was wir zeigen wollten. Bist du damit einverstanden?

Ja, bin ich :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]