www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Martingal
Martingal < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingal: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:49 Mi 02.09.2015
Autor: Fry

Aufgabe
Sei [mm](\Omega,\mathcal A,P)=([0,1],\mathcal B_{[0,1]}[/mm],[mm]\lambda_{[0,1]})[/mm] und [mm]M_n=n*1_{[0,\frac{1}{n}]}[/mm].
Zeigene Sie, dass [mm](M_n)_n\in\mathbb N[/mm] ein fast sicher konvergentes Martingal ist und bestimmen Sie den Grenzwert.





Hallo zusammen,

ich habe mir ein paar Gedanken zu der Aufgabe gemacht, ich komme allerdings bei dem Nachweis der Martingaleigenschaft nicht weiter.
Hier sind zunächst einmal meine Überlegungen zu der Aufgabe:
1. [mm](M_n)_n[/mm] ist nach dem Martingalkonvergenzsatz fast sicher konvergent, da [mm](M_n)_n[/mm] ein nichtnegatives Martingal ist.
2. [mm]M_n[/mm] konvergiert fast sicher gegen 0, da für alle [mm]\omega\in(0,1][/mm] gilt: [mm]\lim_{n\to\infty}n*1_{[0,\frac{1}{n}]}(\omega)=0[/mm] und
ferner [mm]P((0,1])=1[/mm].
3. Als Filtration habe ich die natürliche gewählt: [mm]\mathcal F_n=\sigma(M_1,...,M_n)[/mm].
Es muss ja gezeigt werden, dass [mm]E[M_{n+1}-M_n|\mathcal F_n]=0[/mm] ist.
[mm]E[M_{n+1}-M_n|\mathcal F_n]=E[1_{[0,\frac{1}{n+1}]}-n*1_{[\frac{1}{n+1},\frac{1}{n}]}|\mathcal F_n][/mm]
Weiter komme ich allerdings nicht.
Hat jemand einen Tipp für mich?

Viele Grüße
Fry

        
Bezug
Martingal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Do 03.09.2015
Autor: Fry

Hallo,

die Frage hat sich erledigt,
habe als Filtration [mm]\mathcal F_n=[/mm][mm]\sigma\left(\left[0,\frac{1}{n}\right]\right)[/mm] verwendet, dann klappt das.

Gruß
Fry

Bezug
                
Bezug
Martingal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Fr 04.09.2015
Autor: tobit09

Hallo Fry!


> die Frage hat sich erledigt,
>  habe als Filtration [mm]\mathcal F_n=[/mm][mm]\sigma\left(\left[0,\frac{1}{n}\right]\right)[/mm]
> verwendet, dann klappt das.

Durch diese Wahl von [mm] $\mathcal{F}_n$ [/mm] wird gar keine Filtration erklärt.

Ich gehe im Übrigen davon aus, dass man sich nicht selbst eine Filtration wählen soll, sondern dass mit einem "Martingal schlechthin" ein Martingal bezüglich der natürlichen Filtration gemeint ist.


Ich weiß nicht, ob es einen eleganteren Lösungsweg gibt, aber ein explizites Bestimmen der natürlichen Filtration und die Verwendung der Definition des bedingten Erwartungswertes führen hier zum Ziel.


Viele Grüße
Tobias

Bezug
                        
Bezug
Martingal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Fr 04.09.2015
Autor: Fry

Hey Tobias,

ja, mit der natürlichen Filtration komm ich leider nicht weiter...

Oh, du hast vollkommen Recht, jetzt seh ich auch, was du meinst. :(

Viele Grüße
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]