www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markov-Ketten
Markov-Ketten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Ketten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:13 Sa 28.06.2014
Autor: jusates

Aufgabe
Sei [mm] X_n [/mm] mit n [mm] \in \IN [/mm] eine Folge unabh., identisch verteilter ZV mit gegeben Verteilung P = 1/2 * [mm] \delta_{-1} [/mm] + 1/2 * [mm] \delta_1. [/mm]

Betrachte für ein beliebiges n [mm] \in \IN_0 [/mm] die ZV:
[mm] S_n [/mm] = [mm] \summe_{i=0}^{n}{X_n}, [/mm] wobei [mm] X_0 [/mm] = 0

a) Zeige: [mm] S_n [/mm] ist eine zeithomogene Markovkette
b) Bestimme die (Tipp: Unendlich-Dim.!) Übergangsmatrix von [mm] S_n [/mm]
c) Bestimme [mm] P(S_{2n} [/mm] = 0) für ein bel. n [mm] \in \IN [/mm]



Hallo!

Ich wollte fragen, ob meine bisherigen Ansätze zu der Aufgabe etwa in die richtige Richtung gehen:

Zur a)
zu zeigen wäre hier, dass [mm] p_{ij}(t) [/mm] = [mm] p_{ij} [/mm] für alle t, d.h
[mm] p_{ij}(t) [/mm] = [mm] P(S_{t+1} [/mm] = [mm] s_j [/mm] | [mm] S_t [/mm] = [mm] s_i) [/mm]
[mm] p_{ij} [/mm] = [mm] P(S_1 [/mm] = [mm] s_j [/mm] | [mm] S_0 [/mm] = [mm] s_i) [/mm]

Wobei mir hier unklar ist, was mein [mm] s_i [/mm] ist in diesem Fall (Im Allgemeinen wird dies ja als "Zustandsmenge" bezeichnet). Sonst wüsste ich etwa, was zu tun ist.

zur b) Ich kann ja die Übergangsmatrix für [mm] p_{ij}(t) [/mm] erstellen und über a) dann ein wenig akurater schreiben, richtig (da ja zeithomgene Markovkette dann gegeben ist).

zur c) Hierfür habe ich noch keine Idee, da ich erstmal an a) und b) arbeiten würde.

Danke vorweg für eure Hilfe!

#Nachtrag: Kleinere Korrekturen vorgenommen.

        
Bezug
Markov-Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mo 30.06.2014
Autor: jusates

Ich wäre immernoch an einer Antwort interessiert! Danke!

Gruß

Bezug
                
Bezug
Markov-Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Do 03.07.2014
Autor: schachuzipus

Hallo,

was meinst du denn mit [mm]\delta_{-1}[/mm] und [mm]\delta_1[/mm] ?

Gruß

schachuzipus

Bezug
                        
Bezug
Markov-Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Do 03.07.2014
Autor: Gonozal_IX

Hallo schachuzipus,

damit meint er ziemlich sicher das Diracmaß auf -1 und 1

Gruß,
Gono.

Bezug
        
Bezug
Markov-Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Do 03.07.2014
Autor: Gonozal_IX

Hiho,

deine Vorüberlegungen sind soweit richtig, mach dir aber mal klar, was das eigentlich für ein Prozess ist.

Du hast also Zufallsvariablen, die mit W-Keit [mm] \bruch{1}{2} [/mm] um einen Schritt eine 1 liefern oder eine -1, d.h. in jedem Schritt entscheidet du anfangend bei 0, ob du einen Schritt nach oben gehst oder einen Schritt nach unten.

Das Ergebnis kannst du dir mal in einem x-y-Diagramm aufmalen, ein paar Beispielpfade hast du []hier.

Mach dir mal klar, dass folgendes gilt:

[mm] $S_0 [/mm] = [mm] X_0 [/mm] = 0$

[mm] $S_1 [/mm] = [mm] X_0 [/mm] + [mm] X_1 [/mm] = [mm] X_1$ [/mm]

[mm] $S_2 [/mm] = [mm] X_1 [/mm] + [mm] X_2$ [/mm]

usw.

D.h. erstmal: [mm] $p_{ij} [/mm] = [mm] P(S_1 [/mm] = [mm] s_j [/mm] | [mm] S_0 [/mm] = [mm] s_i)$ [/mm] macht nur für welche Werte von [mm] s_j [/mm] und [mm] s_i [/mm] überhaupt Sinn?

Dann machen wir weiter....

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]