www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markov-Kette nachweisen
Markov-Kette nachweisen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Kette nachweisen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:53 Fr 07.06.2013
Autor: heraklid

Aufgabe
Sei p [mm] \in [/mm] [0, 1], S eine endliche Menge und f : S x {0, 1} [mm] \to [/mm] S. Weiter seien [mm] Y_i \sim [/mm] Bin(1, p), i [mm] \in \IN, [/mm] unabhängige Zufallsvariablen. Wir definieren rekursiv für ein festes s' [mm] \in [/mm] S:
[mm] X_0 [/mm] = s', [mm] X_n [/mm] = [mm] f(X_{n-1}, Y_n), [/mm] n [mm] \in \IN. [/mm]
ˆ
1. Zeigen Sie, dass die Folge [mm] X_0 [/mm] , [mm] X_1 [/mm] , [mm] X_2 [/mm] , . . . eine Markovkette ist.
̈
Tipp: Uberlegen Sie sich zuerst einen Beweis für S und f wie in Teil 2 der Aufgabe

2. Geben Sie die Übergangsmatrix [mm] \IP [/mm] im Fall S = {−1, 1} und f (x, 0) = x, f (x, 1) = −x, x [mm] \in [/mm] S an.







Hallo,

ich bin leicht verunsichert, ob denn die Aufgabe überhaupt korrekt gestellt ist.
Zunächst einmal verstehe ich schon die rekursive Definition nicht. Es wird doch von S x {0,1} nach S abgebildet. Als zweites Argument von f in der Definition wird aber eine Zufallsvariable verwendet, die zwar die Werte 0 und 1 annimmt, aber eben eine Funktion ist.

Dann haben wir in der Vorlesung eine Markov-Kette zu einer Startverteilung auf S definiert:
Eine Markov-Kette zu [mm] \IP [/mm] mit Startverteilung [mm] \pi_0 [/mm] ist eine Folge [mm] X_0,X_1,X_2,... [/mm] von (diskreten) Zufallsvariablen mit Werten in S, s.d. (1) [mm] P(X_0=i)=\pi_0(i) [/mm]
und (2) Es gilt die Markov Eigenschaft.

Jedenfalls ist in der Aufgabenstellung doch keine Startverteilung angegeben?

Soll man laut Aufgabenstellung [mm] X_0 [/mm] konstant setzen auf s'? Dann wäre [mm] P(X_0=s')=1 [/mm]
und [mm] P(X_0=s)=0 [/mm] für alle s [mm] \not= [/mm] s' aus S.


Für die Übergangsmatrix hatten wir [mm] \IP^m [/mm] (i,j) = [mm] P(X_{n+m}=j\|X_n [/mm] = i) hergeleitet mit i,j aus S. Wende ich dies nun zur Berechnung meiner Übergangsmatrix an, dann erhalte ich:
[mm] \bruch{P(X_1=j,X_0=i)}{P(X_0=i)}. [/mm] Nach obigem wäre aber wenn ich s'=-1 wähle [mm] P(X_0=1)=0, [/mm] also würde ich durch 0 teilen. Irgendwie macht das so alles wenig Sinn. Ich  würde daher gerne wissen, ob ich die Aufgabe hier falsch interpretiere.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Markov-Kette nachweisen: Index
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Sa 08.06.2013
Autor: Infinit

Hallo Heraklid,
den Index bekommst Du hin, indem Du ihn in geschweifte Klammern setzt:
[mm] X_{n-1} [/mm] gibt das gewünschte.
Viele Grüße,
Infinit

Bezug
        
Bezug
Markov-Kette nachweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 14.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]