www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markov-Kette
Markov-Kette < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Kette: Rekurrente Klasse
Status: (Frage) überfällig Status 
Datum: 14:21 Sa 11.01.2014
Autor: xblume88x

Aufgabe
Zustandsraum gegeben: I(1,2,3,4,5,6,7)

      ( 0,2   0,8   0     0    0      0    0      
      ( 0,7    0     0     0    0      0    0  
      (  0      0    0,3  0,5  0,2   0    0
Q= (  0      0    0,6   0    0,4   0    0
      (  0      0     0    0,4  0,6   0    0
      (  0     0,1  0,1  0,2  0,2  0,3  0,1
      ( 0,1   0,1  0,1   0    0,1  0,2  0,4

Hoffe die Matrix ist einigermaßen zu erkenne. Nun solle ich eben die rekurrente und Transienten Zustände angeben. sowie die rekurrenten Klassen. Desweitern ob sie positiv bzw. null rekurrent sind

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Als erstes habe ich einen Graph gezeichnet und bin dann darauf gekommen, dass die Zustände 1,2,3,4,5 rekurrent sind und die Zustände 6,7 transient.

Kann ich das aber auch einfach aus der Matrix auslesen??? Also weil ja die spalten Summe >1 ist bei den rekurrenten zuständen, oder ist das nur zufafll??

Bloß bei den rekurrenten Klassen bin ich absolut Planlos wie ich da vorgehen muss... Kann mir da bitte wer helfen??? Wie unterscheiden sich die Klassen? Also nach welchem Kriterium??

        
Bezug
Markov-Kette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Sa 11.01.2014
Autor: xblume88x

       Nochmal die Matrix neu

      ( 0,2    0,8    0      0      0      0    0      
      ( 0,7     0     0      0      0      0    0  
      (  0      0    0,3    0,5   0,2      0    0
      (  0      0    0,6    0     0,4      0    0
      (  0      0      0    0,4   0,6      0    0
      (  0     0,1   0,1    0,2   0,2    0,3  0,1
      ( 0,1    0,1   0,1    0     0,1    0,2  0,4

Bezug
        
Bezug
Markov-Kette: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 20.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]