www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Mantelfläche durch Integration
Mantelfläche durch Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mantelfläche durch Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Do 07.05.2009
Autor: Rechenmeister

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Wie man auf die Formel für die Mantelfläche eines Rotationskörpers kommt weiß ich, kann diese auch herleiten.
Jedoch hab ich eine kleine Blokkade bei der Begründung, warum die Formel
[mm] M=\integral_{a}^{b}{2*pi*f(x) dx} [/mm]
nciht funktioniert bzw falsch ist, analog zur Volumenberechung des Körpers mit
[mm] V=\integral_{a}^{b}{pi*(f(x))^{2} dx} [/mm]
ich würde doch durch meine "falsche erdachte" formel für M für jeden x wert den kreisumfang mit dem radius f(x) berechnen, un jeden kreisumfang dann von a bis b addieren, also integrieren. was man ja auch bei der volumenrechnung macht.
Hoffe ihr versteht mein Problem und könnt mir meinen Denkfehler aufzeigen
Vielen Dank


        
Bezug
Mantelfläche durch Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Do 07.05.2009
Autor: Al-Chwarizmi


> Hallo!
>  
> Wie man auf die Formel für die Mantelfläche eines
> Rotationskörpers kommt weiß ich, kann diese auch herleiten.
> Jedoch hab ich eine kleine Blockade bei der Begründung,
> warum die Formel
> [mm]M=\integral_{a}^{b}{2*pi*f(x) dx}[/mm]
>  nciht funktioniert bzw
> falsch ist, analog zur Volumenberechung des Körpers mit
> [mm]V=\integral_{a}^{b}{pi*(f(x))^{2} dx}[/mm]
> ich würde doch durch meine "falsche erdachte" formel für M
> für jeden x wert den kreisumfang mit dem radius f(x)
> berechnen, un jeden kreisumfang dann von a bis b addieren,
> also integrieren. was man ja auch bei der volumenrechnung
> macht.
> Hoffe ihr versteht mein Problem und könnt mir meinen
> Denkfehler aufzeigen
>  Vielen Dank


Guten Abend,

mit dieser Rechnung approximierst du die Oberfläche
der Rotationsfläche durch eine Summe von Zylinder-
Mantelflächen, deren Mantellinien alle parallel zur
Rotationsachse sind. Dabei kommt im Allgemeinen
ein zu kleiner Wert für die Oberfläche heraus, denn
die Mantellinien der Kegelstümpfe (anstatt Zylinder),
die man für die Approximation benützen sollte, sind
um einen Faktor [mm] \wurzel{1+y'^2} [/mm] länger als die entsprechenden
Zylinder-Mantellinien. Diese systematische Abweichung
fällt bei der Limesberechnung nicht heraus, wie es z.B.
bei der Volumenberechnung der Fall wäre.

LG     Al-Chw.
  


Bezug
                
Bezug
Mantelfläche durch Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Do 07.05.2009
Autor: Rechenmeister

Also wird ber der Herleitung für das Rotationsvolumen auch die Approximation durch Kegelstümpfe verwendet, bloß das der zusätzliche term sich dann aufhebt/wegkürzt?Danke für die Antwort


Also hab den denkfehler gemacht, dass ich dachte bei der Volumenberechnung wird durch Zylinderapproximation hergeleitet. Das klappt in dem Fall zwar auch, doch der rihcitge Weg ist denke ich über die Kegelstümpfe.   Danke nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]