www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mächtigkeit von Mengen
Mächtigkeit von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Mengen: Aufgabe a,b,c
Status: (Frage) beantwortet Status 
Datum: 20:19 Sa 09.06.2007
Autor: Tvenna

Aufgabe
Für reelle Zahlen [mm] a,b\in\IR\setminus0 [/mm] definieren wir [mm] a\sim [/mm] b [mm] :\gdw [/mm] a*b>0.
Zeigen sie:
[mm] 1)\forall a\in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] a
[mm] 2)\forall [/mm] a,b [mm] \in\IR\setminus\{0\} [/mm] : [mm] a\sim [/mm] b [mm] \Rightarrow [/mm] b [mm] \sim [/mm] a
[mm] 3)\forall [/mm] a,b,c [mm] \in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] b [mm] \wedge [/mm] b [mm] \sim [/mm] c [mm] \Rightarrow [/mm] a [mm] \sim [/mm] c.

Hallo!
Ich habe folgende Aufgabe gestellt bekommen und komme nicht richtig voran.
Mengen und Mächtigkeit haben wir zum ersten mal, und ich weiss nicht so recht wie ich damit vorgehen muss.
zu 1) Das könnte man ja über die Umkehrfunktion machen, nur weiss ich nicht so recht wie man das machen soll. Nimmt man sich da einfach Mengen her?
zu 2) Da wollte ich auch zeigen, dass a [mm] \tob [/mm] bijektiv ist, dann ist auch [mm] f^{-1} b\toa [/mm] bijektiv, aber wieder hake ich an der Schreibweise und an der Umkehrfunktion...
zu 3) auch dies würde ich gerne mit der Bijektivität beweisen..
Ich habe leider wirklich noch keinen Plan wie ich daran gehen soll..
Hat jemand einen Tip oder ein Beispiel?
Viele Grüsse

        
Bezug
Mächtigkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 09.06.2007
Autor: schachuzipus

Hallo Tvenna,

was willst du denn mit Funktionen und Bijektivität? [kopfkratz3]

Und wo ist der Bezug zu "Mächtigkeit von Mengen"? - hmm

M.E. sieht die Aufgaben schwer danach aus, dass du zeigen sollst, dass [mm] $\sim$ [/mm] eine Äquivalenzrelation auf [mm] $\IR\setminus\{0\}\times\IR\setminus\{0\}$ [/mm] ist.

Mal zu (a)

nach def [mm] \sim [/mm] gilt [mm] a\sim a\gdw a\cdot{}a=a^2>0 [/mm] und das gilt doch augenscheinlich für alle [mm] a\in\IR\setminus\{0\} [/mm]

zu (b) Stichwort "Kommutativität von [mm] \cdot [/mm] in [mm] \IR [/mm]

(c) die Transitivität kriegste auch hin - benutze einfach die def von [mm] \sim [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]