www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - MWS der Integralrechnung
MWS der Integralrechnung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MWS der Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:16 Mo 15.02.2016
Autor: impliziteFunktion

Aufgabe
Seien [mm] $a
Zeigen Sie:

[mm] \left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right)\geq (b-a)^2 [/mm]

Hallo,

ich möchte diese Abschätzung beweisen.
Als Hinweis ist gegeben, dass man zu erst zeigen soll, dass für alle [mm] $x,y\in[a,b]$ [/mm] gilt:

[mm] $\frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\geq [/mm] 2$

Dies ist ja eine bekannte Abschätzung die man stumpf nachrechnen kann und dann die zweite binomische Formel anwendet.

Zu der eigenen Aufgabe möchte ich den Mittelwertsatz der Integralrechnung anwenden.
Demnach gibt es [mm] $\xi_1,\xi_2\in[a,b]$ [/mm] mit

[mm] \int_a^b f(x)\,dx=f(\xi_1)(b-a) [/mm] und [mm] \int_a^b \frac{1}{f(y)}\,dy=\frac{1}{f(\xi_2)}(b-a) [/mm]

Damit erhalte ich also bereits

[mm] $\left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right)=\frac{f(\xi_1)}{f(\xi_2)}(b-a)^2$ [/mm]

Jetzt muss ich noch irgendwie zeigen, dass [mm] $\frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1$ gilt.
Hier sollte ich dann wahrscheinlich irgendwie den Hinweis ausnutzen. Aber es gelingt mir nicht.

Über einen Tipp würde ich mich freuen.
Vielen Dank im voraus.

        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mo 15.02.2016
Autor: fred97

1. Ich sehe auch nicht, wie Du  $ [mm] \frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1 $ zeigen kannst. Nach dem Hinweis gilt "nur"

   $ [mm] \frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1 $  oder  $ [mm] \frac{f(\xi_2)}{f(\xi_1)}\geq [/mm] 1 $

(Vielleicht hab ich auch nur Tomaten auf den Augen).

2. Hier eine Möglichkeit über Integration im [mm] \IR^2: [/mm]

Sei $Q:=[a,b] [mm] \times [/mm] [a,b]$ und $g(x,y):= [mm] \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)} [/mm] $  für $(x,y) [mm] \in [/mm] Q$

Mit dem Hinweis haben wir $g [mm] \ge [/mm] 2$ auf $Q$, also

  [mm] $2*(b-a)^2=2*\lambda_2(Q)=\integral_{Q}^{}{2 d(x,y)} \le \integral_{Q}^{}{g(x,y) d(x,y)}=2*\integral_{Q}^{}{\frac{f(x)}{f(y)} d(x,y)}=2*\left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right) [/mm] $

Das letzte "=" ist der Satz von Fubini.

3. Eine weitere Möglichkeit, die ohne den Hinweis auskommt:

Setze [mm] f_1(x):=\wurzel{f(x)} [/mm] und [mm] f_2:=\bruch{1}{f_1}. [/mm] Dann folgt mit der Cauchy-Schwarz- Ungleichung:

[mm] (b-a)^2=(\integral_{a}^{b}{f_1(x)f_2(x) dx})^2 \le (\integral_{a}^{b}{f_1(x)^2 dx})*(\integral_{a}^{b}{f_2(x)^2 dx}), [/mm]

woraus die gewünschte Ungleichung resultiert.

FRED

Bezug
                
Bezug
MWS der Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:41 Mo 15.02.2016
Autor: impliziteFunktion

Vielen Dank. Deine Lösungen gefallen mir sehr.

Ich hätte aber noch eine Frage zum vorletzten Gleichheitszeichen aus deiner 2. Möglichkeit:

[mm] $\integral_{Q}^{}{g(x,y) d(x,y)}=2\cdot{}\integral_{Q}^{}{\frac{f(x)}{f(y)} d(x,y)}$ [/mm]

Wie genau kommt dies zustande?

Wenn ich noch einpaar Zwischenschritte einfüge, erhalte ich doch:

[mm] $\integral_{Q}^{}{g(x,y) d(x,y)}=\integral_{Q}^{} \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\, [/mm] d(x,y)$

Jetzt kann man die Linearität ausnutzen, aber wie man auf das gewünschte kommt, sehe ich leider nicht.
Oder soll das Gleichheitszeichen eigentlich ein [mm] $\leq$ [/mm] sein?

Edit:

Die Frage hat sich mittlerweile geklärt.
Vielen Dank.

Bezug
        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 15.02.2016
Autor: Gonozal_IX

Hiho,

auch wenn es letztendlich das gleiche ist, wie fred's Lösung, kann man das auch mit "normaler" [mm] $\IR^1$-Integration [/mm] lösen (und dadurch klärt sich auch deine Frage an fred):

Beginne mit der Ungleichung:

$ [mm] \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\geq [/mm] 2 $

und Integriere beide Seiten erst nach x, dann nach y und du erhältst:

[mm] $\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(y) dy\right)\left(\int_a^b \frac{1}{f(x)} dx\right) \geq 2(b-a)^2$ [/mm]

Variablensubstitution auf der linken Seite liefert das Gewünschte.

Gruß,
Gono

Bezug
                
Bezug
MWS der Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Mo 15.02.2016
Autor: impliziteFunktion

Hi,

was genau muss denn Substituiert werden? Ich sehe irgendwie keine Substitution die etwas ändern würde.

Ich möchte die beiden Integral-Produkte ja addieren, richtig?

Bezug
                        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Mo 15.02.2016
Autor: Gonozal_IX

Hiho,

> was genau muss denn Substituiert werden? Ich sehe irgendwie
> keine Substitution die etwas ändern würde.
>  
> Ich möchte die beiden Integral-Produkte ja addieren,
> richtig?

ja. Mach dir mal klar, dass man die Integrationsvariable nennen kann, wie man möchte (rein formal ist das eben eine Substitution), d.h. es ist völlig schnuppe, ob ich

[mm] $\left(\int_a^b f(x) dx\right)$ [/mm] oder [mm] $\left(\int_a^b f(y) dy\right)$ [/mm] schreibe.

Angewendet auf die linke Seite ergibt das also:

[mm] $\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(y) dy\right)\left(\int_a^b \frac{1}{f(x)} dx\right) [/mm] = [mm] \left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] = [mm] 2\left(\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right)\right) [/mm]

Und damit nach division durch 2 das Gewünschte.

Gruß,
Gono

Bezug
                                
Bezug
MWS der Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mo 15.02.2016
Autor: impliziteFunktion

Vielen Dank. Damit hat sich meine Frage erledigt.
Jetzt wo du es sagst, ist es einleuchtend, dass es egal ist, was die Integrationsvariable ist, hat mich aber gerade etwas verwirrt. Ich werde es mir merken.

Vielen Dank euch für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]