www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - ML geometrische Verteilung
ML geometrische Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ML geometrische Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Do 04.10.2018
Autor: hase-hh

Aufgabe
Bei der Qualitätskontrolle eines bestimmten Produkts werden am Laufband zufällig Stichproben entnommen, auf Fehler überprüft und wieder zurückgelegt. dabei wird jeweils die Anzahl der Stichproben zwischen zwei defekten Proben notiert. Folgende Liste nach 10 defekten Exemplaren liegt vor:

27, 42, 29, 37, 41, 29, 30, 38, 41, 34.

Geben Sie den Maximum-Likelihood-Schätzwert für den Anteil der defekten Geräte an, welcher sich aus der obigen Stichprobe und der Annahme, dass die Zufallsvariable X  "Anzahl der intakten Geräte bis zum nächsten Defekt" bei der obigen Stichprobe geometrisch verteilt ist mit

P(X = n) = [mm] (1-p)^{n-1}*p [/mm]  .




        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Do 04.10.2018
Autor: luis52

Kann es sein, dass du deine Hochschularbeiten noch nicht gemacht hast? Was weisst du denn ueber ML?

Bezug
                
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Do 04.10.2018
Autor: hase-hh

Merkwürdig, dass eine Mitteilung als Beantwortung eingestuft wird???

Die Frage ist nicht beantwortet, also offen.


Bezug
        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Fr 05.10.2018
Autor: hase-hh

s.u.
Bezug
        
Bezug
ML geometrische Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 So 07.10.2018
Autor: hase-hh

... ein Versuch...

[mm] x_i [/mm] sind die Stichprobenwerte

mit [mm] \summe_{i=1}^{10} x_i [/mm] = 348


[mm] L(x_1,x_2,...,x_{10}, [/mm] p) = [mm] P(X=x_1)*P(X=x_2)...*P(X=x_{10}) [/mm]

= [mm] (1-p)^{x_1 -1}*p...*(1-p)^{x_{10} -1}*p [/mm]

= [mm] p^{10}*(1-p)^{\summe_{i=1}^{10} x_i} [/mm]

= [mm] p^{10}*(1-p)^{348-10} [/mm]

= [mm] p^{10}*(1-p)^{338} [/mm]

Von dieser Funktion suche ich den Extremwert bzw. das Maximum.

L ' [mm] (x_1,x_2,...,x_10, [/mm] p) = [mm] 10*p^9*(1-p)^{338} +p^{10}*338*(1-p)^{337}*(-1) [/mm]

= [mm] p^9*(1-p)^{337}*[10*(1-p) [/mm] - 338*p)]

notwendige Bedingung

L ' ( [mm] x_1,x_2,...,x_10, [/mm] p) = 0

[mm] p^9*(1-p)^{337}*[10*(1-p) [/mm] - 338*p)]  = 0


=>  10-10p -338p = 0

p = [mm] \bruch{10}{348} \approx [/mm] 0,0287


richtig?


Bezug
                
Bezug
ML geometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 So 07.10.2018
Autor: luis52


>
> richtig?
>  

[ok] Geht doch.

Kleiner Tipp: Wenn du anstatt mit $L(p)= [mm] p^{10}\cdot{}(1-p)^{338} [/mm] $ mit [mm] $\ln [/mm] L(p)$ rechnest, wird das Differenzieren einfacher. Biede Funktionen besitzen dieselben Maxima.

Bezug
                        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Fr 12.10.2018
Autor: hase-hh

Ok.

f(p) = ln(L(p))

f(p) = [mm] ln(p^{10}*(1-p)^{338}) [/mm]

f(p) = [mm] ln(p^{10]} [/mm] + [mm] ln((1-p)^{338}) [/mm]

f(p) = 10*ln(p) + 338*ln(1-p)

f ' (p) = [mm] 10*\bruch{1}{p} +338*\bruch{1}{1-p}*(-1) [/mm]  | *p*(1-p)

0 = 10*(1-p) -338*p

p = [mm] \bruch{10}{348} [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]