www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lyapunov-Funktion
Lyapunov-Funktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lyapunov-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 05.01.2009
Autor: jumape

Aufgabe
Zeigen Sie, dass [mm] V(u,v)=u^4+v^2 [/mm] eine Lyapunov-funktion ist bei (0,0) für
[mm] u'(x)=v(x)^2-u(x)^3 [/mm]
[mm] v'(x)=(u(x)^2-1)v(x)) [/mm]  

V ist eine Lyapunovfunktion, wenn
V(0,0)=0 offensichtlich erfüllt
V(x,y)>0 für (x,y) in einer Umgebung [mm] U\(0,0) [/mm] von (0,0) auch offensichtlich erfüllt
[mm] V°(x,y)=V'(x,y)*f(x)\le0 [/mm] für [mm] x\in [/mm] U

wobei f(x) die Vorschrift: x'(t)=f(x(t)) ist

beim letzten habe ich ein ptoblem:
ich soll da zeigen, dass:
[mm] 4u^3(v^2-u^3)+2v^2(u^2-1)\le0 [/mm]

ist und komme da irgendwie nicht weiter, gibt es da irgendeinen Trick habe ich vielleicht eine sehr einfache Formel nicht mehr im Kopf oder hat vielleicht jemand eine IDee wie man mir da helfen könnte?

Dannwäre es nett wenn man mir das sagen würde. Vielen Dank jumape

        
Bezug
Lyapunov-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Di 06.01.2009
Autor: rainerS

Hallo!

> Zeigen Sie, dass [mm]V(u,v)=u^4+v^2[/mm] eine Lyapunov-funktion ist
> bei (0,0) für
>  [mm]u'(x)=v(x)^2-u(x)^3[/mm]
>  [mm]v'(x)=(u(x)^2-1)v(x))[/mm]
> V ist eine Lyapunovfunktion, wenn
> V(0,0)=0 offensichtlich erfüllt
>  V(x,y)>0 für (x,y) in einer Umgebung [mm]U\(0,0)[/mm] von (0,0)
> auch offensichtlich erfüllt
>  [mm]V°(x,y)=V'(x,y)*f(x)\le0[/mm] für [mm]x\in[/mm] U
>  
> wobei f(x) die Vorschrift: x'(t)=f(x(t)) ist
>  
> beim letzten habe ich ein ptoblem:
>  ich soll da zeigen, dass:
>  [mm]4u^3(v^2-u^3)+2v^2(u^2-1)\le0[/mm]
>
> ist und komme da irgendwie nicht weiter, gibt es da
> irgendeinen Trick habe ich vielleicht eine sehr einfache
> Formel nicht mehr im Kopf oder hat vielleicht jemand eine
> IDee wie man mir da helfen könnte?

Du musst nur systematisch untersuchen, für welche Werte von u und v die beiden Summanden $<0$ sind. Zum Beispiel ist für $u<0$ der Term [mm] $4u^3(v^2-u^3)<0$ [/mm] und [mm] $2v^2(u^2-1)<0$ [/mm] für $-1<u<+1$. Nimm doch einfach mal an, dass $-1/2<u<1/2$ und schaue, ob du damit eine Umgebung konstruieren kannst !

Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]