www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - L^p-Raum
L^p-Raum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L^p-Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 04.03.2005
Autor: Pit

Hallo zusammen,

folgende Definition wird hier wohl einigen bekannt sein :

[mm] L^p{ (\mu)} [/mm] = {f: f ist messbar und numerisch mit [mm] ||f||_{p}< \infty} [/mm]

mit  [mm] ||f||_{p} [/mm] = ( [mm] \integral_{omega}^{} {|f|^p d \mu})^{1/p} [/mm]

Bisher dachte ich mit [mm] |f|^p [/mm] ist der Betrag der Funktion hoch p gemeint,bis ich heute aufgeschnappt habe,daß die Bezeichnung was mit Äquivalenzklassen zu tun hat.Kann das vielleicht jemand aufklären ? Bin jetzt ein wenig irritiert.

        
Bezug
L^p-Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 04.03.2005
Autor: Stefan

Hallo Pit!

Also, wir haben einen Vektorraum

[mm] ${\cal L}^p(\mu):=\{f:\Omega\to \overline{\IR}\, : \, f \quad \mbox{ist messbar und numerisch mit} \quad \int\limits_{\Omega} |f|^p < \infty\}$. [/mm]

Durch

[mm] $N_p(f):= \left( \int\limits_{\Omega} |f|^p\, d\mu \right)^{\frac{1}{p}}$ [/mm]

wird [mm] $({\cal L}^p(\mu),N_p)$ [/mm] zu einem halbnormierten Raum.

"Halbnormiert" deshalb, weil für [mm] $N_p$ [/mm] alle Bedingungen einer Norm gelten außer

[mm] $N_p(f) [/mm] = 0 [mm] \quad \Rightarrow \quad [/mm] f=0$,

das gilt hier nicht.

Nun möchte man aber gerne einen normierten vollständigen Raum, also einen Banachraum, haben. Wie schafft man das? Naja, man dividiert das, was stört, einfach raus, bildet also den Quotientenvektorraum modulo des "Ausartungsaumes" der Halbnorm, also modulo:

[mm] $A_p:=\{f \in {\cal L}^p(\mu)\, : \, N_p(f)=0\}$. [/mm]

Wir bilden also den Quotientenraum

[mm] $L^p(\mu):={\cal L}^p(\mu)/A_p$, [/mm]

und definieren auf [mm] $L_p(\mu)$: [/mm]

[mm] $\Vert [/mm] f + [mm] N_p\Vert_p:=N_p(f)$. [/mm]

Die Norm wird also repräsentantenweise definiert (aufgrund der speziellen Struktur ist die Abbildung wohldefiniert).

Man kann zeigen, dass durch [mm] $\Vert \cdot \Vert_p$ [/mm] eine Norm gegeben wird, und dass [mm] $L_p(\mu)$ [/mm] zusammen mit dieser Norm ein Banachraum ist.

Der Einfachheit halber identifiziert man aber häufig die Äquivalenzklassen mit den Repräsentanten, schreibt also statt [mm] $\Vert [/mm] f + [mm] N_p\Vert_p$ [/mm] lieber [mm] $\Vert [/mm] f [mm] \Vert_p$, [/mm] und hat bei den Elementen von [mm] $L^p(\mu)$ [/mm] Funktionen im Sinn (und nicht deren Äquivalenzklassen).

Nur muss man sich halt klar machen, dass alle Eigenschaften, die wir über Elemente aus [mm] $L_p(\mu)$ [/mm] treffen, eigentlich für die Äquivalenzklassen gelten und daher nur [mm] $\mu$-fast [/mm] sicher gelten.

Zeigt man also für $f [mm] \in L^p(\mu)$: [/mm] $f=0$, so heißt das eigentlich:

$f=0$ [mm] $\mu$-fast [/mm] sicher,

d.h. auf [mm] $\mu$-Nullmengen [/mm] kann die Gleichung durchaus aufgehoben sein. Das ist aber meistens unerheblich, da man selten punktweise Aussagen braucht, sondern eher Konvergenzen "im $p$-ten Mittel", also in der [mm] $L^p(\mu)$-Norm, [/mm] wo man eh wieder zu den Klassen übergeht.

Ich hoffe ich konnte dir das alles etwas deutlicher machen. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]