www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Lp-Räume
Lp-Räume < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lp-Räume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:28 Do 28.05.2009
Autor: Fry

Aufgabe
[mm] (\Omega,A,P) [/mm] sei Wkeitsraum und [mm] f_n\subset L_1(p). [/mm] Zeigen Sie, dass äquivalent sind:
(1) [mm] ||f_n-f_0||\to0 [/mm]
(2) [mm] ||f_n||\to||f_0|| [/mm] und [mm] P(|f_n-f_0|>\varepsilon)\to0 [/mm] für alle [mm] \varepsilon>0. [/mm]

wobei [mm] ||f||:=\integral_{}^{}{|f| d\mu} [/mm]
und [mm] L_1(P) [/mm] Menge der messbaren Funktionen mit [mm] \integral_{}^{}{|f| d\mu}<\infty [/mm]

Hinweis: [mm] f_n [/mm] besitzt eine Teilfolge, die für P fast alle [mm] w\in\Omega [/mm] konvergiert.

Hallo zusammen,

hab mich an der Aufgabe versucht, komme aber nur teilweise weiter.
Mein Ansatz:
Hinrichtung:

[mm] P(|f_n-f_0|<\varepsilon)\le \integral_{}^{}{ \bruch{|f_n-f_0|}{\varepsilon}d\mu}=\bruch{1}{\varepsilon}*||f_n-f_0||)\to [/mm] 0
Gilt die erste Abschätzung überhaupt bzw warum?

und

[mm] 0\le|\integral_{}^{}{|f_n| d\mu}-\integral{}^{}{|f_0|d\mu} |=|\integral{}^{}{(f_n-f_0)d\mu}|\le |\integral{}^{}{|f_n-f_0|d\mu}\to [/mm] 0
[mm] \Rightarrow ||f_n||\to ||f_0|| [/mm]

Stimmt das so?
Bzgl der Rückrichtung hab ich keine Ahnung. Würde mich freuen, wenn ihr mir Tipps geben könntet. Danke für eure Hilfe!

VG
Fry

        
Bezug
Lp-Räume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:43 Fr 29.05.2009
Autor: Fry

Hat niemand einen Hinweis für mich?

Bezug
                
Bezug
Lp-Räume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 31.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lp-Räume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 29.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]