www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Lotto 6 aus 49
Lotto 6 aus 49 < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotto 6 aus 49: Zusatzzahlproblem beim Lotto
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 11.06.2008
Autor: darchr

Hi,

wenn ich ausrechnen will, wie hoch die Chance ist, 5 Richtige im Lotto zu kriegen, gehe ich doch wie folgt vor:

P(5R) = [mm] (\vektor{6 \\ 5} [/mm] * [mm] \vektor{43 \\ 1}) [/mm] / [mm] \vektor{49 \\ 6} [/mm]

Wir haben es in der Schule aber irgendwie noch so gemacht, dass wir vom Zähler 6 subtrahiert haben, weil theoretisch auch die Zusatzzahl dabei sein könnte - das habe ich aber nicht verstanden, warum gerade 6 und warum muss man das überhaupt abziehen?

Wird die Zusatzzahl denn extra gezogen, also gibt es dann [mm] \vektor{49 \\ 7} [/mm] ?

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lotto 6 aus 49: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mi 11.06.2008
Autor: darchr

Ich habe die Frage jetzt noch in einem anderen Forum (uni-protokolle) geschrieben?


Bezug
        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 11.06.2008
Autor: Blech


> Hi,
>  
> wenn ich ausrechnen will, wie hoch die Chance ist, 5
> Richtige im Lotto zu kriegen, gehe ich doch wie folgt vor:
>  
> P(5R) = [mm](\vektor{6 \\ 5}[/mm] * [mm]\vektor{43 \\ 1})[/mm] / [mm]\vektor{49 \\ 6}[/mm]
>  

Ja.

> Wir haben es in der Schule aber irgendwie noch so gemacht,
> dass wir vom Zähler 6 subtrahiert haben, weil theoretisch
> auch die Zusatzzahl dabei sein könnte - das habe ich aber
> nicht verstanden, warum gerade 6 und warum muss man das
> überhaupt abziehen?

Das klingt reichlich seltsam.

  

> Wird die Zusatzzahl denn extra gezogen, also gibt es dann
> [mm]\vektor{49 \\ 7}[/mm] ?

Ja und Nein, würd ich sagen. Es werden auf jeden Fall 7 gezogen, aber ob Du das dann so hinschreibst, hängt von Deiner Sichtweise ab:

Nein:
Mein erster Ansatz wäre von der Logik her:
es wurden 7 Zahlen gezogen, jetzt überlegen wir uns, wieviele Möglichkeiten es gab, den Schein richtig auszufüllen, geteilt durch die Gesamtzahl der Möglichkeiten, ihn auszufüllen:

Richtige Möglichkeiten: Wir wählen uns 5 aus den 7 Zahlen [mm] (${7\choose 5}$) [/mm] und kreuzen sie an, und dann noch eine aus den restlichen 42 [mm] (${42\choose 1}$). [/mm]

Alle: Wir kreuzen 6 aus 49 an.

d.h.: [mm] $\frac{{7\choose 5}*{42\choose 1}}{{49\choose 6}}$ [/mm]
  

Ja:
Jetzt drehen wir die Logik um. Wir haben 6 Zahlen vorgegeben und ziehen jetzt 7 Kugeln.

Richtige Möglichkeiten: Wir ziehen 5 aus den 6 Kugeln [mm] (${6\choose 5}$) [/mm] und 2 aus den restlichen 43 [mm] (${43\choose 2}$). [/mm]

Alle Möglichkeiten: Wir ziehen 7 aus 49.

d.h. [mm] $\frac{{6\choose 5}*{43\choose 2}}{{49\choose 7}}$ [/mm]



Wenn ich mich jetzt nicht vertan habe, sollte in beiden Fällen das gleiche rauskommen
=)

Es gibt fast immer mehrere Ansätze. Versuch einfach, Dir logisch zu überlegen, was Du tust, und das dann Schritt für Schritt in Formeln zu gießen.

ciao
Stefan

Bezug
        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mi 11.06.2008
Autor: rabilein1

Meine Antwort sieht so aus - zunächst einmal ohne Berücksichtigung der Zusatzzahl:

[mm] \bruch{6}{49}*\bruch{5}{48}*\bruch{4}{47}*\bruch{3}{46}*\bruch{2}{46}*\bruch{43}{44}*6 [/mm]

Das ist eine Chance von 1:54.200

Begründung:
Für die erste Richtige hast du 6 Zahlen von 49 zur Auswahl...
Für die Falsche hast du am Ende 43 Zahlen von 44 zur Auswahl...
Die Mal 6 bedeutet: Es ist egal, an welcher Stelle die Falsche gezogen wird


Falls die Zusatzzahl mit berücksichtigt werden soll, dann wäre es [mm] \bruch{42}{44} [/mm] anstatt  [mm] \bruch{43}{44}, [/mm]
Weil: Auch die Zusatzzahl wäre eine Richtige, die man nicht ziehen darf

Die Chance wäre dann 1:55.491



Bezug
                
Bezug
Lotto 6 aus 49: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:02 Do 12.06.2008
Autor: darchr

Hier nochmal ein konkretes Beispiel bzgl. der Zusatzzahl (so wie wir es gemacht haben)

Lotto - 6 aus 42 (!)

5 Richtige ohne Zusatzzahl

[mm] \vektor{6 \\ 5} [/mm] * [mm] \vektor{36 \\ 1} [/mm] - 6 / [mm] \vektor{42 \\ 6} [/mm]

Jetzt eine Aufgabe, wo ich nur das Ergebnis habe:

4 Richtige ohne Zusatzzahl

[mm] \vektor{6 \\ 4} [/mm] * [mm] \vektor{36 \\ 2} [/mm] / [mm] \vektor{42 \\ 6} [/mm]

Rauskommen soll: 8925 / 5245786

Auf den Nenner komme ich ja, aber ich weiß jetzt nicht, was ich am Zähler noch ändern muss!

Bezug
                        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 07:33 Fr 13.06.2008
Autor: rabilein1


> Jetzt eine Aufgabe, wo ich nur das Ergebnis habe:
>  
> 4 Richtige ohne Zusatzzahl
>  
> [mm]\vektor{6 \\ 4}[/mm] * [mm]\vektor{36 \\ 2}[/mm] / [mm]\vektor{42 \\ 6}[/mm]
>
> Rauskommen soll: 8925 / 5245786


Soviel vorweg: Das Ergebnis ist richtig

Ich habe zwar eine andere Methode, wie ich darauf komme, aber der Weg spielt auch keine Rolle.

Ich habe gerechnet:

[mm] \bruch{6}{42}*\bruch{5}{41}*\bruch{4}{40}*\bruch{3}{39}*\bruch{35}{38}*\bruch{34}{37}*\bruch{6*5}{2} [/mm] = 0.00170 = 1:587.76

Grund: Zunächst einmal tue ich so, als müsste ich mit den vier ersten Ziehungen jeweils eine Richtige haben und mit den beiden letzten Ziehungen jeweils eine Falsche (die Zusatzzahl darf ich auch nicht ziehen).

Mit [mm] \bruch{6*5}{2} [/mm] multipliziere ich, weil es egal ist, an welcher Stelle die Falschen gezogen werden.

Bezug
                                
Bezug
Lotto 6 aus 49: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Fr 13.06.2008
Autor: rabilein1

Ich vermute mal, dein [mm]\vektor{36 \\ 2}[/mm] stimmt nicht. Denn das ergibt nicht mein  [mm] \bruch{35}{38}*\bruch{34}{37} [/mm]

Alle anderen Positionen stimmen überein.

Und das Endergebnis, was du schreibst, stimmt mit meinem Ergebnis überein.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]