www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lotfußpunkt und Kugelgleichung
Lotfußpunkt und Kugelgleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotfußpunkt und Kugelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 21.11.2005
Autor: TinaHansen

ich habe diese frage in keinem aneren forum gestellt

Hey leute, bin mal wieder bei ner aufgabe hängen geblieben:

in einem räumlichen kartesischen Koordinatensystem sind die Punkte
[mm] P_1 [/mm] (10/-6/-3), [mm] P_2 [/mm] (6/2/0) und [mm] P_3 [/mm] (12/0/0) sowie die Ebene E: [mm] \vec [/mm] x *  [mm] \vektor{2 \\ 6 \\ 3} [/mm] = 24 gegeben.

a) Von [mm] P_1 [/mm] wir das Lot auf die Ebene E gefällt. Bestimmen Sie den Abstand von [mm] P_1 [/mm]  von E sowie die koordinaten des lotfußpunktes F.
b)eine gerade g verläuft durch [mm] P_1 [/mm] und [mm] P_2. [/mm] Berechnen Sie den Schnittwinkel zwischen E und g.
c) Ermitteln sie eine kugelgleichung einer kugel k, die [mm] P_1 [/mm] als Mittelpunkt hat und die durch [mm] P_2 [/mm] geht.
d) K schneidet aus der geraden h, die durch [mm] p_2 [/mm] und [mm] P_3 [/mm] geht, eine strecke aus. bestimmen sie die länge dieser strecke
e)die kugel K besitzt in [mm] P_2 [/mm] eine tangentialebene. geben sie eine gleichung dieser ebene an.


a) ich habe zuerst die lotgerade durch [mm] P_1 [/mm] und E berechnet:
g: [mm] \vecr [/mm] = [mm] \vektor{10 \\ -6 \\ -3} [/mm] + [mm] \alpha *\vektor{2 \\ 6 \\ 3} [/mm]

Als Abstand [mm] P_1 [/mm] von E hab ich 7 raus.

Aber wie bestimme ich die Koordinaten des Lotfußpunktes?

b) g durch [mm] P_1 [/mm] und [mm] P_2: [/mm]

g: [mm] \vecr [/mm] = [mm] \vektor{10\\ -6 \\ -3} [/mm] + [mm] \alpha *\vektor{6 \\ 2 \\ 0} [/mm]

als schnittwinkel zwischen g und E erhalte ich 32,227°

c) der mittelpunkt ist dann ja [mm] \vektor{10\\ -6 \\ -3}, [/mm] aber wie mach ich das, das die kugelgleichung  durch [mm] P_2 [/mm] geht?
da ich das nicht kann, kann ich auch die teilaufgaben d und e nicht rechnen. brauch also eure hilfe.
vielen dank im voraus, lg tina


        
Bezug
Lotfußpunkt und Kugelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Mo 21.11.2005
Autor: TinaHansen

--> sorry, hab es aus versehen bei analysis reingesetzt...habs jetzt nochmal bei vktorrechnung geschrieben

lg, tina

Bezug
        
Bezug
Lotfußpunkt und Kugelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 21.11.2005
Autor: Fugre


> ich habe diese frage in keinem aneren forum gestellt
>  
> Hey leute, bin mal wieder bei ner aufgabe hängen
> geblieben:
>  
> in einem räumlichen kartesischen Koordinatensystem sind die
> Punkte
> [mm]P_1[/mm] (10/-6/-3), [mm]P_2[/mm] (6/2/0) und [mm]P_3[/mm] (12/0/0) sowie die
> Ebene E: [mm]\vec[/mm] x *  [mm]\vektor{2 \\ 6 \\ 3}[/mm] = 24 gegeben.
>  
> a) Von [mm]P_1[/mm] wir das Lot auf die Ebene E gefällt. Bestimmen
> Sie den Abstand von [mm]P_1[/mm]  von E sowie die koordinaten des
> lotfußpunktes F.
>  b)eine gerade g verläuft durch [mm]P_1[/mm] und [mm]P_2.[/mm] Berechnen Sie
> den Schnittwinkel zwischen E und g.
>  c) Ermitteln sie eine kugelgleichung einer kugel k, die
> [mm]P_1[/mm] als Mittelpunkt hat und die durch [mm]P_2[/mm] geht.
>  d) K schneidet aus der geraden h, die durch [mm]p_2[/mm] und [mm]P_3[/mm]
> geht, eine strecke aus. bestimmen sie die länge dieser
> strecke
>  e)die kugel K besitzt in [mm]P_2[/mm] eine tangentialebene. geben
> sie eine gleichung dieser ebene an.
>  
>
> a) ich habe zuerst die lotgerade durch [mm]P_1[/mm] und E
> berechnet:
>  g: [mm]\vecr[/mm] = [mm]\vektor{10 \\ -6 \\ -3}[/mm] + [mm]\alpha *\vektor{2 \\ 6 \\ 3}[/mm]
>  
> Als Abstand [mm]P_1[/mm] von E hab ich 7 raus.
>  
> Aber wie bestimme ich die Koordinaten des Lotfußpunktes?
>  
> b) g durch [mm]P_1[/mm] und [mm]P_2:[/mm]
>  
> g: [mm]\vecr[/mm] = [mm]\vektor{10\\ -6 \\ -3}[/mm] + [mm]\alpha *\vektor{6 \\ 2 \\ 0}[/mm]
>
> als schnittwinkel zwischen g und E erhalte ich 32,227°
>
> c) der mittelpunkt ist dann ja [mm]\vektor{10\\ -6 \\ -3},[/mm] aber
> wie mach ich das, das die kugelgleichung  durch [mm]P_2[/mm] geht?
>   da ich das nicht kann, kann ich auch die teilaufgaben d
> und e nicht rechnen. brauch also eure hilfe.
>  vielen dank im voraus, lg tina
>  

Hi Tina,

also fangen wir sofort an. Bei der a) hast du den richtigen Weg gewählt [ok], Gerade durch den Punkt
bilden und als Richtungsvektor den Normalenvektor der Ebene verwenden. Diese Gerade lässt du
nun die Ebene schneiden und der Schnittpunkt ist der gesuchte Lotfußpunkt. Die b) habe ich nicht
überprüft, aber da geht es ja beinahe nur um die richtige Anwendung der Formel. So kommen wir
nun zur c), den Mittelpunkt hast du ja richtig gewählt und nun sollten wir vielleicht kurz überlegen,
was so besonders an den Punkten ist, die auf einer Kugel liegen. Die Antwort ist eigentlich sehr
naheliegend, auch wenn man es manchmal übersieht, sie haben einfach alle den gleichen Abstand
zum Kugelmittelpunkt. Für dich bedeutet das, dass du den Abstand der beiden gegebenen Punkte
berechnen musst. Dieser Abstand ist gleichzeitig auch der Kugelradius und somit ist die Aufgabe
fast gelöst. Die nächsten beiden Aufgaben überlasse ich dir, sollte etwas unklar sein, oder haben
dich meine Aussagen eher verwirrt, so frag bitte nach.

Liebe Grüße
Nicolas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]