www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrik" - Lorentz-Transformation
Lorentz-Transformation < Elektrik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lorentz-Transformation: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:29 Fr 13.11.2015
Autor: Jonas123

Aufgabe
Für eine Lorentz-Transformation von einem Inertialsystem K in ein Inertialsystem K', das sich gegenüber K mit der Geschwindigkeit [mm] $\vec{v}$ [/mm] bewegt, erhält man die folgenden Transformationsgleichungen für die Felder [mm] $\vec{E}$ [/mm] und [mm] $\vec{B}$: [/mm]

[mm] $\vec [/mm] { E' } [mm] =\gamma (\vec [/mm] { E } [mm] +\vec [/mm] { [mm] \beta [/mm]  } [mm] \times \vec [/mm] { B } [mm] )-\frac [/mm] { { [mm] \gamma }^{ 2 } [/mm] }{ [mm] 1+\gamma [/mm]  } [mm] \vec [/mm] { [mm] \beta [/mm]  } [mm] (\vec [/mm] { [mm] \beta [/mm]  } [mm] \cdot \vec [/mm] { E } )$

$ [mm] \vec [/mm] { B' } [mm] =\gamma (\vec [/mm] { B } [mm] -\vec [/mm] { [mm] \beta [/mm]  } [mm] \times \vec [/mm] { E } [mm] )-\frac [/mm] { { [mm] \gamma }^{ 2 } [/mm] }{ [mm] 1+\gamma [/mm]  } [mm] \vec [/mm] { [mm] \beta [/mm]  } [mm] (\vec [/mm] { [mm] \beta [/mm]  } [mm] \cdot \vec [/mm] { B } )$

(Es gilt: [mm] $\vec [/mm] { [mm] \beta [/mm]  } [mm] =\frac [/mm] { [mm] \vec [/mm] { v }  }{ c } $ und [mm] $\gamma =\frac [/mm] { 1 }{ [mm] \sqrt [/mm] { 1-{ [mm] \beta }^{ 2 } [/mm] }  } $)

Zeigen Sie, dass man eine Lorentz-Transformation in ein Inertialsystem K' finden kann, in dem [mm] $\vec{E'}$ [/mm] und [mm] $\vec{B'}$ [/mm] parallel sind, wenn [mm] $\vec{E}$ [/mm] und [mm] $\vec{B}$ [/mm] in K die Bedingung [mm] $4(\vec{E} \cdot \vec{B})^2+(E^2-B^2)^2\neq [/mm] 0$ erfüllen.
Hinweis: Wählen Sie [mm] $\beta$ [/mm] so, dass es senkrecht zu [mm] $\vec{E}$ [/mm] und [mm] $\vec{B}$ [/mm] steht.

Hallo erstmal,

ich höre dieses Semester eine Vorlesung zur Speziellen Relativitätstheorie und wir haben dies als Übungsaufgabe bekommen.

Meine Überlegungen:
Es ist [mm] $\vec [/mm] { [mm] \beta [/mm]  } [mm] \bot \vec [/mm] { E } [mm] \bot \vec [/mm] { B } $, also vereinfachen sich die gegebenen Gleichungen zu

[mm] $\vec [/mm] { E' } [mm] =\gamma (\vec [/mm] { E } [mm] +\vec [/mm] { E } [mm] )=\gamma (2\vec [/mm] { E })$
[mm] $\vec [/mm] { B' } [mm] =\gamma (\vec [/mm] { B } [mm] -\vec [/mm] { B } )=0$

da das Skalarprodukt Null wird und das Kreuzprodukt ja einen senkrechten Vektor liefert.

Dies macht mich jedoch stutzig und ich weiß ab diesem Punkt auch nicht mehr wie ich da weiter machen soll. Zumal ich die angegebene Bedienung [mm] $4(\vec{E} \cdot \vec{B})^2+(E^2-B^2)^2\neq [/mm] 0$ noch nicht berücksichtigt habe.

Es wäre sehr nett, wenn jemand, der sich mit diesem Gebiet der Physik auskennt, dies mal anschauen könnte und mir Feedback geben könnte ob meine Überlegungen bis dahin überhaupt stimmen und wie ich dann weiter machen soll um schließlich das zu beweisen.

Besten Dank schon mal an alle, die sich die Zeit nehmen das hier durchzulesen.

Jonas


        
Bezug
Lorentz-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Fr 13.11.2015
Autor: leduart

Hallo
wie kommst du auf Es ist $ [mm] \vec [/mm] { [mm] \beta [/mm]  } [mm] \bot \vec [/mm] { E } [mm] \bot \vec [/mm] { B } $,
und wenn,  dann wie auf [mm] \beta*B=E [/mm] usw)
Gruss leduart

Bezug
                
Bezug
Lorentz-Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:33 Sa 14.11.2015
Autor: Jonas123

Erst mal vielen Dank für deine Antwort leduart.

Ich verstehe jedoch nicht ganz was du geschrieben hast.

In der Angabe steht ganz am Ende:
Hinweis: Wählen Sie $ [mm] \vec{\beta} [/mm] $ so, dass es senkrecht zu $ [mm] \vec{E} [/mm] $ und $ [mm] \vec{B} [/mm] $ steht.

Aufgrund dieses Hinweises dacht ich, dass $ [mm] \vec{\beta} \perp [/mm] $ [mm] \vec{E} [/mm] $  [mm] \perp \vec{B}$, [/mm] weil ich  in den vorherigen Semestern gelernt habe, dass das E-Feld und B-Feld immer senkrecht aufeinander stehen.

Du schreibst ja dann weiter, dass  $ [mm] \beta\cdot{}B=E [/mm] $. Müsste das nicht über das Kreuzprodukt laufen, denn beim Skalarprodukt ergeben ja zwei orthogonale Vektoren Null.

Grüße Jonas

Bezug
                        
Bezug
Lorentz-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 So 15.11.2015
Autor: andyv

Hallo,

> Erst mal vielen Dank für deine Antwort leduart.
>  
> Ich verstehe jedoch nicht ganz was du geschrieben hast.
>
> In der Angabe steht ganz am Ende:
>   Hinweis: Wählen Sie [mm]\vec{\beta}[/mm] so, dass es senkrecht zu
> [mm]\vec{E}[/mm] und [mm]\vec{B}[/mm] steht.
> Aufgrund dieses Hinweises dacht ich, dass [mm]\vec{\beta} \perp[/mm]
> [mm]\vec{E}[/mm]  [mm]\perp \vec{B}[/mm], weil ich  in den vorherigen
> Semestern gelernt habe, dass das E-Feld und B-Feld immer
> senkrecht aufeinander stehen.

Wenn das so wäre, wäre die Aufgabe sinnlos.

>  
> Du schreibst ja dann weiter, dass  [mm]\beta\cdot{}B=E [/mm].
> Müsste das nicht über das Kreuzprodukt laufen, denn beim
> Skalarprodukt ergeben ja zwei orthogonale Vektoren Null.

>

Genau, du kannst O.E. annehmen, dass E und B nicht parallel sind und [mm] $\beta=\alpha E\times [/mm] B$ mit einem zu bestimmenden Skalar [mm] $\alpha$ [/mm] setzen.  

> Grüße Jonas

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]