www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Krypto,Kodierungstheorie,Computeralgebra" - Logik Junktoren
Logik Junktoren < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logik Junktoren: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:18 So 05.11.2006
Autor: abros

Aufgabe
(a)Geben sie mittels einer Wahrheitswertetabelle einen zweistelligen Junktor [mm]\odot[/mm]an sodass die Formel (A[mm]\odot[/mm]B)[mm]\to[/mm](A[mm]\wedge[/mm]B[mm]\wedge[/mm]C)gültig ist.

(b)Begründen sie warum es keinen zweistelligen Junktor [mm]\Rightarrow[/mm] gibt so dass die Formel (A[mm]\wedge[/mm]B[mm]\wedge[/mm]C)[mm]\gdw[/mm](A[mm]\Rightarrow[/mm]B) gültig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich weiss leider nicht wie ich die Aufgabe angehen soll bei Teil (b) konnte ich das richtige symbol nicht finden und habe deswegen [mm]\Rightarrow[/mm] genommen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logik Junktoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 11.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]