www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Logarithmusumformung
Logarithmusumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusumformung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 05.01.2010
Autor: Skyryd

Aufgabe
[mm] ln(\bruch{b^{2}c}{ad^{-2}}) [/mm]

Formen Sie in gleichwertigen Logarithmusterm um.  

Hallo an alle,

ich hab mal ne kleine Verständnisfrage bezüglich der Umformung dieses Logarithmusterms.

Also meine Lösung ist:

2lnb + lnc - lna - 2lnd

In unserer Lösung steht jedoch vor dem letzten 2lnd ein + anstatt eines Minus. Meine Frage also, warum dort ein Plus steht, falls das in der Lösung richtig ist. Ich mein, ich weiß ja auch, dass das Umschreiben einer Multiplikation laut Logarithmusgesetze in einer Addition endet, aber warum fällt das negative Vorzeichen der Potenz weg, wenn ich diese Potenz auch laut der Gesetze vor das lnd setze?

Bin ein wenig verwirrt gerade.

        
Bezug
Logarithmusumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Di 05.01.2010
Autor: Steffi21

Hallo, die angegebene Lösung ist korrekt, [mm] d^{-2} [/mm] steht im Nenner, dann als [mm] d^{2} [/mm] im Zähler, du hast [mm] \bruch{1}{d^{-2}}=\bruch{1}{\bruch{1}{d^{2}}}=d^{2} [/mm] du hast einen Doppelbruch, oder kürzer [mm] d^{-n}=\bruch{1}{d^{n}} (n\in\IN, [/mm] n>0, [mm] d\not=0) [/mm] jetzt wende auf [mm] ln(\bruch{b^{2}cd^{2}}{a}) [/mm] erneut die Logarithmengesetze an, Steffi

Bezug
                
Bezug
Logarithmusumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Di 05.01.2010
Autor: Skyryd

Hallo Steffi,

danke...ich Trottel:) Darauf bin ich ja mal gar nich gekommen, die Potenz in positive Form umzuschreiben:)

Na dann leuchtet mir das vollkommen ein. Vielen Dank

Gruß
Sky

Bezug
        
Bezug
Logarithmusumformung: Zusatz
Status: (Antwort) fertig Status 
Datum: 11:01 Di 05.01.2010
Autor: Roadrunner

Hallo Skyryd!


Es geht auch folgendermaßen. Durch die MBLogarithmusgesetze erhält man am Ende:
$$... \ [mm] -\ln\left(d^{-2}\right) [/mm] \ = \ ... \ [mm] -(-2)*\ln(d) [/mm] \ = \ ... \ [mm] \red{+} [/mm] \ [mm] 2*\ln(d)$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]