Logarithmus < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:44 So 07.07.2013 | Autor: | b.reis |
Aufgabe | Vereinfachen Sie soweit wie möglich!
[mm] log_{a}(\bruch{\wurzel{m+1}}{1+m}) [/mm] |
Hallo,
Ich bin mir nicht sicher was ich mit der Summe unter der Wurzel machen soll,
Leider weiß ich nicht mal wo ich anfangen soll.
danke
benni
|
|
|
|
Hallo Benni,
> Vereinfachen Sie soweit wie möglich!
>
> [mm]log_{a}(\bruch{\wurzel{m+1}}{1+m})[/mm]
> Hallo,
>
> Ich bin mir nicht sicher was ich mit der Summe unter der
> Wurzel machen soll,
>
> Leider weiß ich nicht mal wo ich anfangen soll.
Du sollst (hoffentlcih gelernte!) Logarithmengesetze anwenden, hier benötigst du diese beiden:
[mm] log\left(\bruch{a}{b}\right)=log(a)-log(b)
[/mm]
[mm] log\left(a^b\right)=b*log(a)
[/mm]
Außerdem musst du benutzen, dass man Wurzeln grundsätzlich als Potenzen mit rationalem Exponent darstellen kann, hier
[mm] \wurzel{x}=x^{\bruch{1}{2}}
[/mm]
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:58 So 07.07.2013 | Autor: | b.reis |
Servus, ja hab ich gelernt.
also eigentlich ist 1+m das selbe wie m+1 und daraus müsste man folgern da a/a hoch 0,5 = (a/a)hoch 0,5 also ist das Ergebnis a hoch 0,5 oder 1+m hoch 0,5 oder m+1 hoch o,5
oder
danke
benni
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:03 So 07.07.2013 | Autor: | M.Rex |
> Servus, ja hab ich gelernt.
>
> also eigentlich ist 1+m das selbe wie m+1 und daraus
> müsste man folgern da a/a hoch 0,5 = (a/a)hoch 0,5 also
> ist das Ergebnis a hoch 0,5 oder 1+m hoch 0,5 oder m+1 hoch
> o,5
Wo ist denn da der Logarithmus geblieben.
Fang mal wie folt an:
[mm] \log_{a}\left(\frac{\sqrt{1+m}}{m+1}\right)
[/mm]
[mm] =\log_{a}\left(\frac{\sqrt{m+1}}{(\sqrt{m+1})^{2}}\right)
[/mm]
[mm] =\log_{a}\left(\frac{1}{\sqrt{m+1}}\right)
[/mm]
[mm] =\log_{a}\left(\frac{1}{(m+1)^{\frac{1}{2}}}\right)
[/mm]
[mm] =\log_{a}\left((m+1)^{-\frac{1}{2}}\right)
[/mm]
Jetzt arbeite mit Logarithmengesetzen, bisher sind nur die Potenz- und Wurzelgesetze benutzt worden.
>
> oder
>
> danke
>
> benni
Marius
|
|
|
|