www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Logarithmus
Logarithmus < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Sa 27.06.2009
Autor: necatiates25

Aufgabe
Seien a,b>1. Zeigen Sie, dass loga(b)*logb(a)=1?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe Probleme mit dieser Aufgabe. Wie muss ich denn vorgehen. ich habe mir schon überlegt, dass  a^(1/logb(a))=b und dass b^(1/loga(b))=a . Ob  mir dass hilft weiss ich nicht.
Bitte um Hilfe.

        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 27.06.2009
Autor: schachuzipus

Hallo necatiates25,

> Seien a,b>1. Zeigen Sie, dass loga(b)*logb(a)=1?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe Probleme mit dieser Aufgabe. Wie muss ich denn
> vorgehen. ich habe mir schon überlegt, dass  
> a^(1/logb(a))=b und dass b^(1/loga(b))=a . Ob  mir dass
> hilft weiss ich nicht.

Rechne mal die beiden Logarithmen linkerhand gem. der Formel für die Basisumrechnung in Zehnerlogarithmen, also in [mm] $\lg$ [/mm] um ...

Edit: oder noch schneller, rechne etwa den [mm] $\log_b(a)$ [/mm] um in einen Logarithmus zur Basis a ...

>  Bitte um Hilfe.


LG


schachuzipus

Bezug
                
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Sa 27.06.2009
Autor: necatiates25

wie soll ich das machen mit "in lg umformen" ?

> Rechne mal die beiden Logarithmen linkerhand gem. der
> Formel für die Basisumrechnung in Zehnerlogarithmen, also
> in [mm]\lg[/mm] um ...


Bezug
                        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Sa 27.06.2009
Autor: Steffi21

Hallo,

benutze [mm] log_m(n)=\bruch{log_l(n)}{log_l(m)} [/mm]

wähle z.B. die Basis l=10

Steffi



Bezug
        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 27.06.2009
Autor: abakus


> Seien a,b>1. Zeigen Sie, dass loga(b)*logb(a)=1?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe Probleme mit dieser Aufgabe. Wie muss ich denn
> vorgehen. ich habe mir schon überlegt, dass  
> a^(1/logb(a))=b und dass b^(1/loga(b))=a . Ob  mir dass
> hilft weiss ich nicht.
>  Bitte um Hilfe.

Hallo,
nach der bekannten Formel
[mm] r*log_ba=log_b(a^r) [/mm] gilt also auch [mm] log_ab*log_ba=log_b(a^{log_ab}) [/mm]
Und was ist [mm] a^{log_ab} [/mm] ?
Gruß Abakus


Bezug
                
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Sa 27.06.2009
Autor: necatiates25


>  Und was ist [mm]a^{log_ab}[/mm] ?

Das ist gleich b.

Vielen Dank für alle Tipps!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]