www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Logarithmen und O Notation
Logarithmen und O Notation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen und O Notation: Aufgabe verstehen
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 04.11.2016
Autor: pc_doctor

Aufgabe
Finden Sie für die folgenden Funktionen f(n) möglichst einfache Funktionen g(n) mit f(n) [mm] \in [/mm] O(g(n)). Alle Logarithmen verstehen sich zur Basis 2.

[mm] f_1(n) [/mm] = [mm] log((n!)^2) [/mm]


Hallo,

ich verstehe die Aufgabe nicht so richtig.

Soll ich hier beispielsweise [mm] f_1(n) [/mm] einfach umformen, bzw. anders aufschreiben, sodass [mm] (log((n!)^2) [/mm] < n ist ? Also [mm] "log((n!)^2) [/mm] wächst asymptotisch langsamer als n"


Vielen Dank im Voraus

        
Bezug
Logarithmen und O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Sa 05.11.2016
Autor: Gonozal_IX

Hiho,

> ich verstehe die Aufgabe nicht so richtig.

dazu wäre es vielleicht hilfreich sich zu überlegen, was $f(n) [mm] \in [/mm]  O(g(n))$ bedeutet, nämlich:

[mm] $\limsup_{n\to\infty} \left|\frac{f(n)}{g(n)}\right| [/mm] < [mm] +\infty$ [/mm]

d.h. du sollst eine möglichst einfache Funktion finden (wobei ich die Formulierung unglücklich finde), so dass obiges gilt.

> Soll ich hier beispielsweise [mm]f_1(n)[/mm] einfach umformen

das wäre ein Anfang um mal etwas zu erkennen…

> bzw. anders aufschreiben, sodass [mm](log((n!)^2)[/mm] < n ist ?

Also  wenn du das hinbekämst, wärst du fertig, weil dann ja offensichtlich $g(n) = n$ gewählt werden kann.

> [mm]"log((n!)^2)[/mm] wächst asymptotisch langsamer als n"

das hast du bisher noch nicht gezeigt.
Aber Tipp: [mm] $(log((n!)^2) [/mm] = [mm] 2\log(n!) [/mm] = [mm] 2\sum_{k=2}^n\log(k)$ [/mm]

Gruß,
Gono

Bezug
        
Bezug
Logarithmen und O Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:40 Sa 05.11.2016
Autor: M.Rex

Hallo

Nur zur Sicherheit:

In dieser Diskussion geht es um [mm] \log((n^{2})!), [/mm] das kansnt du dann so nicht einfach umformen, wie es Gonozal_IX hier tut

Marius

Bezug
                
Bezug
Logarithmen und O Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Sa 05.11.2016
Autor: pc_doctor

Vielen Dank für die Antworten, habe es inzwischen gelöst. Schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]