www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Logarithmen Gleichung
Logarithmen Gleichung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Fr 08.10.2010
Autor: Vertax

Aufgabe
Lösen Sie die Gleichung
[mm] 20*\log(x) [/mm] = [mm] 5*\log x^2+10 [/mm]



So hab erstmal den Def Bereich festgelegt:
Df=[mm]{x\in\IR:x>0}[/mm]

habe danach den log aufgelöst nach:
[mm]x^{20} = (x^2)^5+10[/mm] ->
[mm]x^{20} = x^{10}+10[/mm] [mm] |-x^{10} [/mm]
[mm]x^{20} - x^{10} = 10[/mm]

Hat sich erledigt danke ^^


        
Bezug
Logarithmen Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Fr 08.10.2010
Autor: Al-Chwarizmi


> Lösen Sie die Gleichung
>  [mm]20*\log(x)[/mm] = [mm]5*\log x^2+10[/mm]
>  
>
> So hab erstmal den Def Bereich festgelegt:
>  Df=[mm]{x\in\IR:x>0}[/mm]       [ok]
>  
> habe danach den log aufgelöst nach:
>  [mm]x^{20} = (x^2)^5+10[/mm]      [notok]

Ich empfehle dir, die Logarithmengesetze nur in
kleinen Schritten anzuwenden und jeden einzelnen
Schritt zu begründen !

>   [mm]x^{20} = x^{10}+10[/mm] [mm]|-x^{10}[/mm]
>  [mm]x^{20} - x^{10} = 10[/mm]      [notok]
>  
> Hat sich erledigt danke ^^

..... aha ....

(für die Lösung sollte man noch wissen, auf welche Basis
sich der log bezieht !)

LG    Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]